Performance Optimization
Performance optimization guide for BroxiAI workflows and integrations
This guide provides strategies and techniques to optimize the performance of your BroxiAI workflows, reduce execution time, and improve resource efficiency.
Workflow Performance Optimization
Component-Level Optimization
1. Reduce Component Count
Strategy: Minimize the number of components in your workflow

Before (Inefficient):
5 separate components
Multiple data transfers
Increased latency
After (Optimized):
1 combined component
Single data transfer
Reduced latency
2. Optimize Component Configuration
{
"optimization_settings": {
"ai_models": {
"temperature": 0.1,
"max_tokens": "only_as_needed",
"model_selection": "fastest_for_task"
},
"caching": {
"enabled": true,
"ttl": 3600,
"strategy": "content_based"
},
"timeouts": {
"default": 30000,
"file_processing": 60000,
"ai_inference": 45000
}
}
}
3. Parallel Processing
Enable Parallel Execution:
{
"workflow_config": {
"parallel_processing": {
"enabled": true,
"max_concurrent": 3,
"independent_branches": [
["component_a", "component_b"],
["component_c", "component_d"],
["component_e"]
]
}
}
}
Parallel Workflow Design:

Data Flow Optimization
1. Minimize Data Transfer
Optimize Data Passing:
# Inefficient: Passing entire dataset
def process_workflow(large_dataset):
result1 = component1(large_dataset) # Processes entire dataset
result2 = component2(large_dataset) # Duplicates processing
return combine(result1, result2)
# Optimized: Pass only necessary data
def process_workflow_optimized(large_dataset):
# Extract only needed fields
minimal_data = extract_required_fields(large_dataset)
result1 = component1(minimal_data)
result2 = component2(minimal_data)
return combine(result1, result2)
2. Implement Smart Caching
import hashlib
import json
from functools import wraps
def workflow_cache(ttl=3600):
"""Cache workflow results based on input hash"""
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
# Create cache key from inputs
cache_key = hashlib.md5(
json.dumps({"args": args, "kwargs": kwargs}, sort_keys=True).encode()
).hexdigest()
# Check cache
cached_result = get_from_cache(cache_key)
if cached_result:
return cached_result
# Execute and cache result
result = func(*args, **kwargs)
set_cache(cache_key, result, ttl)
return result
return wrapper
return decorator
@workflow_cache(ttl=1800)
def expensive_ai_processing(input_data):
# Expensive AI model inference
return model.predict(input_data)
AI Model Optimization
Model Selection Strategy
1. Choose Appropriate Model Size
{
"model_selection_guide": {
"simple_tasks": {
"recommended": ["gpt-3.5-turbo", "claude-instant"],
"use_cases": ["simple_qa", "basic_classification", "short_summaries"]
},
"complex_tasks": {
"recommended": ["gpt-4", "claude-3-opus"],
"use_cases": ["complex_reasoning", "code_generation", "detailed_analysis"]
},
"speed_critical": {
"recommended": ["gpt-3.5-turbo", "claude-instant"],
"optimization": "prioritize_speed_over_quality"
}
}
}
2. Optimize Model Parameters
def optimize_model_config(task_type, input_length):
"""Optimize model configuration based on task"""
base_config = {
"temperature": 0.1, # Lower for consistency
"top_p": 0.9,
"frequency_penalty": 0,
"presence_penalty": 0
}
if task_type == "creative":
base_config["temperature"] = 0.7
elif task_type == "factual":
base_config["temperature"] = 0.1
# Optimize max_tokens based on input
if input_length < 1000:
base_config["max_tokens"] = 500
elif input_length < 5000:
base_config["max_tokens"] = 1000
else:
base_config["max_tokens"] = 2000
return base_config
Prompt Engineering for Performance
1. Efficient Prompt Design
# Inefficient prompt
inefficient_prompt = """
Please analyze the following document very carefully and provide a comprehensive analysis including:
1. A detailed summary of the main points
2. Key themes and topics discussed
3. Sentiment analysis of the content
4. Important entities mentioned
5. Potential areas for improvement
6. Recommendations for next steps
Document: {document}
Please provide your analysis in a well-structured format with clear headings and subheadings.
"""
# Optimized prompt
optimized_prompt = """
Analyze this document:
{document}
Provide:
1. Summary (2-3 sentences)
2. Key themes (bullet points)
3. Sentiment (positive/negative/neutral)
4. Main entities (list)
5. Recommendations (3 max)
Format: JSON
"""
2. Use Structured Outputs
structured_output_schema = {
"type": "object",
"properties": {
"summary": {"type": "string", "maxLength": 200},
"themes": {"type": "array", "items": {"type": "string"}, "maxItems": 5},
"sentiment": {"type": "string", "enum": ["positive", "negative", "neutral"]},
"entities": {"type": "array", "items": {"type": "string"}, "maxItems": 10},
"recommendations": {"type": "array", "items": {"type": "string"}, "maxItems": 3}
},
"required": ["summary", "sentiment"]
}
# This ensures consistent, parseable output and reduces processing time
Data Processing Optimization
File Processing Performance
1. Streaming Processing for Large Files
import pandas as pd
from typing import Iterator, Dict, Any
def process_large_csv_streaming(
file_path: str,
chunk_size: int = 10000,
processing_func: callable = None
) -> Iterator[Dict[str, Any]]:
"""Process large CSV files in chunks to optimize memory usage"""
for chunk_df in pd.read_csv(file_path, chunksize=chunk_size):
# Process each chunk
if processing_func:
processed_chunk = processing_func(chunk_df)
else:
processed_chunk = chunk_df
# Yield results incrementally
yield {
"data": processed_chunk.to_dict('records'),
"chunk_size": len(processed_chunk),
"memory_usage": processed_chunk.memory_usage(deep=True).sum()
}
# Clean up memory
del chunk_df, processed_chunk
# Usage
for result_chunk in process_large_csv_streaming("large_file.csv", chunk_size=5000):
# Process each chunk individually
handle_chunk_result(result_chunk)
2. Parallel File Processing
import multiprocessing as mp
from concurrent.futures import ProcessPoolExecutor, as_completed
import os
def process_files_parallel(file_paths: list, max_workers: int = None) -> list:
"""Process multiple files in parallel"""
if max_workers is None:
max_workers = min(len(file_paths), mp.cpu_count() - 1)
results = []
with ProcessPoolExecutor(max_workers=max_workers) as executor:
# Submit all tasks
future_to_file = {
executor.submit(process_single_file, file_path): file_path
for file_path in file_paths
}
# Collect results as they complete
for future in as_completed(future_to_file):
file_path = future_to_file[future]
try:
result = future.result()
results.append({
"file": file_path,
"result": result,
"status": "success"
})
except Exception as e:
results.append({
"file": file_path,
"error": str(e),
"status": "failed"
})
return results
def process_single_file(file_path: str) -> Dict[str, Any]:
"""Process a single file"""
# Your file processing logic here
return {"processed": True, "size": os.path.getsize(file_path)}
Text Processing Optimization
1. Efficient Text Chunking
import tiktoken
from typing import List
class OptimizedTextChunker:
def __init__(self, model: str = "gpt-4", max_tokens: int = 3000, overlap: int = 200):
self.encoding = tiktoken.encoding_for_model(model)
self.max_tokens = max_tokens
self.overlap = overlap
def chunk_by_tokens(self, text: str) -> List[str]:
"""Chunk text by token count for optimal processing"""
# Encode text to tokens
tokens = self.encoding.encode(text)
if len(tokens) <= self.max_tokens:
return [text]
chunks = []
start = 0
while start < len(tokens):
end = start + self.max_tokens
# Get chunk tokens
chunk_tokens = tokens[start:end]
# Decode back to text
chunk_text = self.encoding.decode(chunk_tokens)
chunks.append(chunk_text)
# Move start with overlap
start = end - self.overlap
if start >= len(tokens):
break
return chunks
def chunk_by_sentences(self, text: str, max_tokens: int = None) -> List[str]:
"""Chunk text by sentences while respecting token limits"""
if max_tokens is None:
max_tokens = self.max_tokens
sentences = text.split('. ')
chunks = []
current_chunk = ""
current_tokens = 0
for sentence in sentences:
sentence_tokens = len(self.encoding.encode(sentence))
if current_tokens + sentence_tokens > max_tokens:
if current_chunk:
chunks.append(current_chunk.strip())
current_chunk = sentence
current_tokens = sentence_tokens
else:
current_chunk += sentence + ". "
current_tokens += sentence_tokens
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
# Usage
chunker = OptimizedTextChunker(max_tokens=2000, overlap=100)
chunks = chunker.chunk_by_tokens(long_text)
Memory Management
Memory Optimization Strategies
1. Garbage Collection and Memory Cleanup
import gc
import psutil
import os
from contextlib import contextmanager
@contextmanager
def memory_management():
"""Context manager for memory cleanup"""
# Get initial memory usage
process = psutil.Process(os.getpid())
initial_memory = process.memory_info().rss / 1024 / 1024 # MB
try:
yield
finally:
# Force garbage collection
gc.collect()
# Get final memory usage
final_memory = process.memory_info().rss / 1024 / 1024 # MB
memory_used = final_memory - initial_memory
print(f"Memory used: {memory_used:.2f} MB")
if memory_used > 100: # Alert if using more than 100MB
print("Warning: High memory usage detected")
# Usage
with memory_management():
# Your memory-intensive operations
large_data_processing()
2. Memory-Efficient Data Structures
import numpy as np
from typing import Generator
class MemoryEfficientProcessor:
def __init__(self, chunk_size: int = 1000):
self.chunk_size = chunk_size
def process_large_dataset(self, data: list) -> Generator:
"""Process large datasets in memory-efficient chunks"""
for i in range(0, len(data), self.chunk_size):
chunk = data[i:i + self.chunk_size]
# Process chunk
processed_chunk = self._process_chunk(chunk)
# Yield result and clean up
yield processed_chunk
# Explicitly delete chunk to free memory
del chunk, processed_chunk
gc.collect()
def _process_chunk(self, chunk: list):
"""Process individual chunk"""
# Use numpy for efficient numerical operations
if isinstance(chunk[0], (int, float)):
return np.array(chunk).mean()
else:
return [item.upper() for item in chunk]
# Usage
processor = MemoryEfficientProcessor(chunk_size=500)
results = list(processor.process_large_dataset(huge_dataset))
API and Network Optimization
Request Optimization
1. Connection Pooling
import requests
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
import time
class OptimizedAPIClient:
def __init__(self, base_url: str, max_retries: int = 3):
self.base_url = base_url
self.session = requests.Session()
# Configure retry strategy
retry_strategy = Retry(
total=max_retries,
backoff_factor=1,
status_forcelist=[429, 500, 502, 503, 504],
)
# Configure adapter with connection pooling
adapter = HTTPAdapter(
max_retries=retry_strategy,
pool_connections=10,
pool_maxsize=20
)
self.session.mount("http://", adapter)
self.session.mount("https://", adapter)
def make_request(self, endpoint: str, **kwargs):
"""Make optimized API request"""
url = f"{self.base_url}/{endpoint}"
# Add timeout if not specified
if 'timeout' not in kwargs:
kwargs['timeout'] = (10, 30) # (connect, read)
return self.session.get(url, **kwargs)
def batch_requests(self, requests_data: list):
"""Process multiple requests efficiently"""
results = []
for request_data in requests_data:
result = self.make_request(**request_data)
results.append(result)
# Rate limiting
time.sleep(0.1) # 10 requests per second
return results
2. Response Compression
import gzip
import json
def compress_response(data: dict) -> bytes:
"""Compress API response data"""
json_str = json.dumps(data)
return gzip.compress(json_str.encode('utf-8'))
def decompress_response(compressed_data: bytes) -> dict:
"""Decompress API response data"""
json_str = gzip.decompress(compressed_data).decode('utf-8')
return json.loads(json_str)
# Configure requests to accept compressed responses
headers = {
'Accept-Encoding': 'gzip, deflate',
'Content-Type': 'application/json'
}
Monitoring and Profiling
Performance Monitoring
1. Execution Time Tracking
import time
import functools
from typing import Dict, Any
class PerformanceMonitor:
def __init__(self):
self.metrics = {}
def time_function(self, func_name: str = None):
"""Decorator to time function execution"""
def decorator(func):
name = func_name or func.__name__
@functools.wraps(func)
def wrapper(*args, **kwargs):
start_time = time.time()
try:
result = func(*args, **kwargs)
status = "success"
except Exception as e:
result = None
status = "error"
raise
finally:
execution_time = time.time() - start_time
self._record_metric(name, execution_time, status)
return result
return wrapper
return decorator
def _record_metric(self, name: str, execution_time: float, status: str):
"""Record performance metric"""
if name not in self.metrics:
self.metrics[name] = {
"calls": 0,
"total_time": 0,
"avg_time": 0,
"min_time": float('inf'),
"max_time": 0,
"success_count": 0,
"error_count": 0
}
metric = self.metrics[name]
metric["calls"] += 1
metric["total_time"] += execution_time
metric["avg_time"] = metric["total_time"] / metric["calls"]
metric["min_time"] = min(metric["min_time"], execution_time)
metric["max_time"] = max(metric["max_time"], execution_time)
if status == "success":
metric["success_count"] += 1
else:
metric["error_count"] += 1
def get_report(self) -> Dict[str, Any]:
"""Get performance report"""
return {
"metrics": self.metrics,
"summary": {
"total_functions": len(self.metrics),
"slowest_function": max(
self.metrics.items(),
key=lambda x: x[1]["avg_time"]
) if self.metrics else None
}
}
# Usage
monitor = PerformanceMonitor()
@monitor.time_function("workflow_execution")
def execute_workflow(workflow_id):
# Your workflow execution logic
pass
# Get performance report
report = monitor.get_report()
print(json.dumps(report, indent=2))
2. Resource Usage Monitoring
import psutil
import threading
import time
from collections import deque
class ResourceMonitor:
def __init__(self, sample_interval: float = 1.0, max_samples: int = 100):
self.sample_interval = sample_interval
self.max_samples = max_samples
self.cpu_usage = deque(maxlen=max_samples)
self.memory_usage = deque(maxlen=max_samples)
self.monitoring = False
self.monitor_thread = None
def start_monitoring(self):
"""Start resource monitoring"""
self.monitoring = True
self.monitor_thread = threading.Thread(target=self._monitor_resources)
self.monitor_thread.start()
def stop_monitoring(self):
"""Stop resource monitoring"""
self.monitoring = False
if self.monitor_thread:
self.monitor_thread.join()
def _monitor_resources(self):
"""Monitor system resources"""
process = psutil.Process()
while self.monitoring:
# CPU usage
cpu_percent = process.cpu_percent()
self.cpu_usage.append({
"timestamp": time.time(),
"cpu_percent": cpu_percent
})
# Memory usage
memory_info = process.memory_info()
self.memory_usage.append({
"timestamp": time.time(),
"memory_mb": memory_info.rss / 1024 / 1024,
"memory_percent": process.memory_percent()
})
time.sleep(self.sample_interval)
def get_stats(self) -> Dict[str, Any]:
"""Get resource usage statistics"""
if not self.cpu_usage or not self.memory_usage:
return {"error": "No monitoring data available"}
cpu_values = [sample["cpu_percent"] for sample in self.cpu_usage]
memory_values = [sample["memory_mb"] for sample in self.memory_usage]
return {
"cpu": {
"avg": sum(cpu_values) / len(cpu_values),
"max": max(cpu_values),
"min": min(cpu_values)
},
"memory": {
"avg_mb": sum(memory_values) / len(memory_values),
"max_mb": max(memory_values),
"min_mb": min(memory_values)
},
"samples": len(self.cpu_usage)
}
# Usage
resource_monitor = ResourceMonitor()
resource_monitor.start_monitoring()
# Your workflow execution
execute_long_running_workflow()
resource_monitor.stop_monitoring()
stats = resource_monitor.get_stats()
print(f"Resource usage: {stats}")
Best Practices Summary
1. Workflow Design
Minimize components: Combine operations where possible
Use parallel processing: Execute independent operations simultaneously
Implement caching: Cache expensive operations and API calls
Choose appropriate models: Use smaller models for simple tasks
2. Data Processing
Stream large files: Process data in chunks to manage memory
Optimize text chunking: Use token-aware chunking strategies
Implement proper cleanup: Clean up memory after processing
3. API Optimization
Use connection pooling: Reuse connections for multiple requests
Implement retry logic: Handle transient failures gracefully
Enable compression: Reduce data transfer sizes
Monitor rate limits: Implement proper rate limiting
4. Monitoring
Track execution times: Monitor component and workflow performance
Monitor resources: Track CPU and memory usage
Set up alerts: Alert on performance degradation
Regular optimization: Continuously optimize based on metrics
Last updated