Rate Limiting
Understanding and managing API rate limits for optimal BroxiAI integration
Learn how to understand, monitor, and work within BroxiAI's API rate limits to ensure reliable and efficient application performance.
Rate Limiting Overview
What is Rate Limiting?
Rate limiting controls the number of API requests you can make within a specific time period. This ensures fair usage across all users and maintains system stability and performance.
Benefits of Rate Limiting
Prevents system overload and ensures stability
Guarantees fair access for all users
Protects against abuse and misuse
Maintains consistent performance
Enables predictable cost management
Rate Limit Structure
Standard Rate Limits
Rate Limits by Plan:
Free Tier:
requests_per_minute: 20
requests_per_hour: 1000
requests_per_day: 10000
concurrent_requests: 2
Pro Plan:
requests_per_minute: 100
requests_per_hour: 6000
requests_per_day: 100000
concurrent_requests: 5
Enterprise Plan:
requests_per_minute: 500
requests_per_hour: 30000
requests_per_day: 1000000
concurrent_requests: 20
Custom Enterprise:
requests_per_minute: "negotiable"
requests_per_hour: "negotiable"
requests_per_day: "negotiable"
concurrent_requests: "negotiable"
Understanding Rate Limit Headers
Response Headers
Rate Limit Information Headers
HTTP/1.1 200 OK
X-RateLimit-Limit: 100
X-RateLimit-Remaining: 95
X-RateLimit-Reset: 1642694400
X-RateLimit-Window: 60
X-RateLimit-Retry-After: 45
Content-Type: application/json
Header Explanations
X-RateLimit-Limit
: Maximum requests allowed in the current windowX-RateLimit-Remaining
: Requests remaining in current windowX-RateLimit-Reset
: Unix timestamp when the rate limit resetsX-RateLimit-Window
: Rate limit window in secondsX-RateLimit-Retry-After
: Seconds to wait before retrying (when rate limited)
Rate Limit Response
When Rate Limited (429 Status)
HTTP/1.1 429 Too Many Requests
X-RateLimit-Limit: 100
X-RateLimit-Remaining: 0
X-RateLimit-Reset: 1642694460
X-RateLimit-Retry-After: 60
Content-Type: application/json
{
"error": {
"code": "RATE_LIMIT_EXCEEDED",
"message": "Rate limit exceeded. Please retry after 60 seconds.",
"details": {
"limit": 100,
"window": "1 minute",
"reset_time": "2024-01-20T10:31:00Z"
}
},
"request_id": "req_abc123"
}
Rate Limit Implementation
Basic Rate Limit Handling
Python Implementation
import time
import requests
from datetime import datetime, timedelta
class BroxiRateLimiter:
def __init__(self, api_token):
self.api_token = api_token
self.base_url = "https://api.broxi.ai/v1"
self.session = requests.Session()
self.session.headers.update({
"Authorization": f"Bearer {api_token}",
"Content-Type": "application/json"
})
# Rate limit tracking
self.requests_made = 0
self.window_start = time.time()
self.rate_limit_info = {}
def make_request(self, method, endpoint, **kwargs):
"""Make API request with rate limit handling"""
# Check if we need to wait
self.check_rate_limit()
url = f"{self.base_url}{endpoint}"
response = self.session.request(method, url, **kwargs)
# Update rate limit info from headers
self.update_rate_limit_info(response.headers)
# Handle rate limit exceeded
if response.status_code == 429:
retry_after = int(response.headers.get('X-RateLimit-Retry-After', 60))
print(f"Rate limit exceeded. Waiting {retry_after} seconds...")
time.sleep(retry_after)
# Retry the request
return self.make_request(method, endpoint, **kwargs)
response.raise_for_status()
return response.json()
def check_rate_limit(self):
"""Check if we need to wait before making request"""
if not self.rate_limit_info:
return # No rate limit info yet
remaining = self.rate_limit_info.get('remaining', 1)
reset_time = self.rate_limit_info.get('reset', 0)
if remaining <= 0:
wait_time = reset_time - time.time()
if wait_time > 0:
print(f"Rate limit reached. Waiting {wait_time:.1f} seconds...")
time.sleep(wait_time)
def update_rate_limit_info(self, headers):
"""Update rate limit information from response headers"""
self.rate_limit_info = {
'limit': int(headers.get('X-RateLimit-Limit', 0)),
'remaining': int(headers.get('X-RateLimit-Remaining', 0)),
'reset': int(headers.get('X-RateLimit-Reset', 0)),
'window': int(headers.get('X-RateLimit-Window', 60))
}
def get_rate_limit_status(self):
"""Get current rate limit status"""
if not self.rate_limit_info:
return "No rate limit information available"
reset_time = datetime.fromtimestamp(self.rate_limit_info['reset'])
return {
"limit": self.rate_limit_info['limit'],
"remaining": self.rate_limit_info['remaining'],
"reset_time": reset_time.isoformat(),
"window_seconds": self.rate_limit_info['window'],
"usage_percentage": (
(self.rate_limit_info['limit'] - self.rate_limit_info['remaining']) /
self.rate_limit_info['limit'] * 100
)
}
# Usage example
client = BroxiRateLimiter("your_api_token")
# Make requests with automatic rate limiting
result = client.make_request("POST", "/flows/my-workflow/run", json={
"input": "Hello, world!"
})
# Check rate limit status
status = client.get_rate_limit_status()
print(f"Rate limit usage: {status['usage_percentage']:.1f}%")
JavaScript Implementation
class BroxiRateLimiter {
constructor(apiToken) {
this.apiToken = apiToken;
this.baseURL = 'https://api.broxi.ai/v1';
this.rateLimitInfo = {};
}
async makeRequest(method, endpoint, data = null) {
// Check if we need to wait
await this.checkRateLimit();
const url = `${this.baseURL}${endpoint}`;
const options = {
method: method,
headers: {
'Authorization': `Bearer ${this.apiToken}`,
'Content-Type': 'application/json'
}
};
if (data) {
options.body = JSON.stringify(data);
}
try {
const response = await fetch(url, options);
// Update rate limit info
this.updateRateLimitInfo(response.headers);
// Handle rate limiting
if (response.status === 429) {
const retryAfter = parseInt(response.headers.get('X-RateLimit-Retry-After') || '60');
console.log(`Rate limit exceeded. Waiting ${retryAfter} seconds...`);
await this.sleep(retryAfter * 1000);
return this.makeRequest(method, endpoint, data);
}
if (!response.ok) {
throw new Error(`HTTP ${response.status}: ${response.statusText}`);
}
return response.json();
} catch (error) {
console.error('API request failed:', error);
throw error;
}
}
async checkRateLimit() {
if (!this.rateLimitInfo.remaining) return;
const { remaining, reset } = this.rateLimitInfo;
if (remaining <= 0) {
const waitTime = reset - Math.floor(Date.now() / 1000);
if (waitTime > 0) {
console.log(`Rate limit reached. Waiting ${waitTime} seconds...`);
await this.sleep(waitTime * 1000);
}
}
}
updateRateLimitInfo(headers) {
this.rateLimitInfo = {
limit: parseInt(headers.get('X-RateLimit-Limit') || '0'),
remaining: parseInt(headers.get('X-RateLimit-Remaining') || '0'),
reset: parseInt(headers.get('X-RateLimit-Reset') || '0'),
window: parseInt(headers.get('X-RateLimit-Window') || '60')
};
}
getRateLimitStatus() {
if (!this.rateLimitInfo.limit) {
return "No rate limit information available";
}
const usagePercentage =
((this.rateLimitInfo.limit - this.rateLimitInfo.remaining) /
this.rateLimitInfo.limit) * 100;
return {
limit: this.rateLimitInfo.limit,
remaining: this.rateLimitInfo.remaining,
resetTime: new Date(this.rateLimitInfo.reset * 1000).toISOString(),
windowSeconds: this.rateLimitInfo.window,
usagePercentage: usagePercentage.toFixed(1)
};
}
sleep(ms) {
return new Promise(resolve => setTimeout(resolve, ms));
}
}
// Usage
const client = new BroxiRateLimiter('your_api_token');
// Make requests with rate limiting
client.makeRequest('POST', '/flows/my-workflow/run', {
input: 'Hello, world!'
}).then(result => {
console.log('Result:', result);
console.log('Rate limit status:', client.getRateLimitStatus());
}).catch(error => {
console.error('Error:', error);
});
Advanced Rate Limiting Strategies
Exponential Backoff
Exponential Backoff Implementation
import random
import time
class ExponentialBackoffRateLimiter:
def __init__(self, api_token, base_delay=1, max_delay=60, max_retries=5):
self.api_token = api_token
self.base_delay = base_delay
self.max_delay = max_delay
self.max_retries = max_retries
def make_request_with_backoff(self, request_func, *args, **kwargs):
"""Make request with exponential backoff on rate limit"""
for attempt in range(self.max_retries):
try:
return request_func(*args, **kwargs)
except RateLimitError as e:
if attempt == self.max_retries - 1:
raise e # Last attempt, re-raise the error
# Calculate delay with jitter
delay = min(
self.base_delay * (2 ** attempt) + random.uniform(0, 1),
self.max_delay
)
print(f"Rate limited (attempt {attempt + 1}). Retrying in {delay:.1f} seconds...")
time.sleep(delay)
raise Exception("Max retries exceeded")
def adaptive_backoff(self, success_rate):
"""Adapt backoff strategy based on success rate"""
if success_rate > 0.9:
# High success rate, be more aggressive
self.base_delay = max(0.5, self.base_delay * 0.9)
elif success_rate < 0.7:
# Low success rate, be more conservative
self.base_delay = min(5.0, self.base_delay * 1.2)
Request Queuing
Queue-Based Rate Limiting
import asyncio
import time
from collections import deque
class QueuedRateLimiter:
def __init__(self, api_token, rate_limit=100, window=60):
self.api_token = api_token
self.rate_limit = rate_limit
self.window = window
self.request_queue = deque()
self.request_times = deque()
self.processing = False
async def add_request(self, request_func, *args, **kwargs):
"""Add request to queue"""
future = asyncio.Future()
self.request_queue.append((request_func, args, kwargs, future))
# Start processing if not already running
if not self.processing:
asyncio.create_task(self.process_queue())
return await future
async def process_queue(self):
"""Process queued requests respecting rate limits"""
self.processing = True
while self.request_queue:
# Check if we can make a request
if not self.can_make_request():
await asyncio.sleep(1) # Wait and check again
continue
# Get next request
request_func, args, kwargs, future = self.request_queue.popleft()
try:
# Make the request
result = await request_func(*args, **kwargs)
future.set_result(result)
# Record request time
self.request_times.append(time.time())
except Exception as e:
future.set_exception(e)
self.processing = False
def can_make_request(self):
"""Check if we can make a request within rate limits"""
current_time = time.time()
# Remove old request times outside the window
while (self.request_times and
current_time - self.request_times[0] > self.window):
self.request_times.popleft()
# Check if we're under the rate limit
return len(self.request_times) < self.rate_limit
def get_queue_status(self):
"""Get current queue status"""
return {
"queued_requests": len(self.request_queue),
"requests_in_window": len(self.request_times),
"rate_limit": self.rate_limit,
"window_seconds": self.window,
"processing": self.processing
}
Distributed Rate Limiting
Redis-Based Distributed Rate Limiting
import redis
import time
import json
class DistributedRateLimiter:
def __init__(self, api_token, redis_client, rate_limit=100, window=60):
self.api_token = api_token
self.redis_client = redis_client
self.rate_limit = rate_limit
self.window = window
self.key_prefix = f"rate_limit:{api_token}"
def can_make_request(self, identifier="default"):
"""Check if request can be made (sliding window)"""
key = f"{self.key_prefix}:{identifier}"
current_time = time.time()
# Use Redis pipeline for atomic operations
pipe = self.redis_client.pipeline()
# Remove old entries
pipe.zremrangebyscore(key, 0, current_time - self.window)
# Count current requests
pipe.zcard(key)
# Add current request
pipe.zadd(key, {str(current_time): current_time})
# Set expiry
pipe.expire(key, self.window)
results = pipe.execute()
current_count = results[1]
return current_count < self.rate_limit
def record_request(self, identifier="default"):
"""Record a request in the distributed rate limiter"""
key = f"{self.key_prefix}:{identifier}"
current_time = time.time()
self.redis_client.zadd(key, {str(current_time): current_time})
self.redis_client.expire(key, self.window)
def get_remaining_requests(self, identifier="default"):
"""Get remaining requests in current window"""
key = f"{self.key_prefix}:{identifier}"
current_time = time.time()
# Clean old entries and count
self.redis_client.zremrangebyscore(key, 0, current_time - self.window)
current_count = self.redis_client.zcard(key)
return max(0, self.rate_limit - current_count)
def get_reset_time(self, identifier="default"):
"""Get time when rate limit resets"""
key = f"{self.key_prefix}:{identifier}"
# Get oldest request in window
oldest_requests = self.redis_client.zrange(key, 0, 0, withscores=True)
if oldest_requests:
oldest_time = oldest_requests[0][1]
return oldest_time + self.window
return time.time()
Rate Limit Monitoring
Real-Time Monitoring
Rate Limit Monitoring Dashboard
class RateLimitMonitor:
def __init__(self, api_token):
self.api_token = api_token
self.metrics = {
"requests_made": 0,
"rate_limited_requests": 0,
"success_rate": 100.0,
"average_response_time": 0,
"peak_usage": 0
}
self.request_history = []
def record_request(self, success, response_time, rate_limited=False):
"""Record request metrics"""
self.metrics["requests_made"] += 1
if rate_limited:
self.metrics["rate_limited_requests"] += 1
# Update success rate
if success:
successful_requests = (
self.metrics["requests_made"] -
self.metrics["rate_limited_requests"]
)
self.metrics["success_rate"] = (
successful_requests / self.metrics["requests_made"] * 100
)
# Update average response time
total_time = (
self.metrics["average_response_time"] *
(self.metrics["requests_made"] - 1) + response_time
)
self.metrics["average_response_time"] = (
total_time / self.metrics["requests_made"]
)
# Record in history
self.request_history.append({
"timestamp": time.time(),
"success": success,
"response_time": response_time,
"rate_limited": rate_limited
})
# Keep only last 1000 requests
if len(self.request_history) > 1000:
self.request_history.pop(0)
def get_usage_patterns(self):
"""Analyze usage patterns"""
if not self.request_history:
return {}
# Calculate patterns
current_time = time.time()
last_hour = [r for r in self.request_history
if current_time - r["timestamp"] < 3600]
last_minute = [r for r in self.request_history
if current_time - r["timestamp"] < 60]
return {
"requests_last_hour": len(last_hour),
"requests_last_minute": len(last_minute),
"rate_limited_last_hour": sum(1 for r in last_hour if r["rate_limited"]),
"average_response_time_hour": (
sum(r["response_time"] for r in last_hour) / len(last_hour)
if last_hour else 0
),
"peak_minute_usage": max(
len([r for r in self.request_history
if abs(r["timestamp"] - t) < 60])
for t in range(int(current_time - 3600), int(current_time), 60)
) if len(self.request_history) > 0 else 0
}
def generate_report(self):
"""Generate rate limit usage report"""
patterns = self.get_usage_patterns()
return {
"summary": self.metrics,
"patterns": patterns,
"recommendations": self.get_recommendations(),
"report_time": time.time()
}
def get_recommendations(self):
"""Get optimization recommendations"""
recommendations = []
if self.metrics["rate_limited_requests"] > 0:
rate_limited_percentage = (
self.metrics["rate_limited_requests"] /
self.metrics["requests_made"] * 100
)
if rate_limited_percentage > 10:
recommendations.append(
"High rate limiting detected. Consider implementing "
"request queuing or upgrading your plan."
)
elif rate_limited_percentage > 5:
recommendations.append(
"Moderate rate limiting detected. Consider adding "
"exponential backoff to your requests."
)
if self.metrics["average_response_time"] > 5:
recommendations.append(
"High average response time. Consider optimizing your "
"requests or implementing caching."
)
patterns = self.get_usage_patterns()
if patterns.get("peak_minute_usage", 0) > 80: # 80% of typical limits
recommendations.append(
"Peak usage approaching limits. Consider smoothing "
"request distribution or upgrading plan."
)
return recommendations
Alerting and Notifications
Rate Limit Alerting System
class RateLimitAlerting:
def __init__(self, monitor, alert_thresholds=None):
self.monitor = monitor
self.alert_thresholds = alert_thresholds or {
"rate_limited_percentage": 5.0,
"usage_percentage": 80.0,
"response_time": 10.0
}
self.alert_channels = []
def add_alert_channel(self, channel):
"""Add alert notification channel"""
self.alert_channels.append(channel)
def check_alerts(self):
"""Check for alert conditions"""
metrics = self.monitor.metrics
patterns = self.monitor.get_usage_patterns()
alerts = []
# Check rate limiting percentage
if metrics["requests_made"] > 0:
rate_limited_pct = (
metrics["rate_limited_requests"] /
metrics["requests_made"] * 100
)
if rate_limited_pct > self.alert_thresholds["rate_limited_percentage"]:
alerts.append({
"type": "rate_limiting",
"severity": "warning",
"message": f"Rate limiting at {rate_limited_pct:.1f}%",
"threshold": self.alert_thresholds["rate_limited_percentage"]
})
# Check usage percentage
usage_pct = patterns.get("requests_last_minute", 0)
if usage_pct > self.alert_thresholds["usage_percentage"]:
alerts.append({
"type": "high_usage",
"severity": "warning",
"message": f"High usage: {usage_pct} requests/minute",
"threshold": self.alert_thresholds["usage_percentage"]
})
# Check response time
if metrics["average_response_time"] > self.alert_thresholds["response_time"]:
alerts.append({
"type": "slow_response",
"severity": "warning",
"message": f"Slow responses: {metrics['average_response_time']:.1f}s avg",
"threshold": self.alert_thresholds["response_time"]
})
# Send alerts
for alert in alerts:
self.send_alert(alert)
return alerts
def send_alert(self, alert):
"""Send alert to configured channels"""
for channel in self.alert_channels:
try:
channel.send(alert)
except Exception as e:
print(f"Failed to send alert via {channel}: {e}")
# Alert channel implementations
class SlackAlertChannel:
def __init__(self, webhook_url):
self.webhook_url = webhook_url
def send(self, alert):
payload = {
"text": f"⚠️ BroxiAI Rate Limit Alert",
"attachments": [{
"color": "warning",
"fields": [
{"title": "Type", "value": alert["type"], "short": True},
{"title": "Severity", "value": alert["severity"], "short": True},
{"title": "Message", "value": alert["message"], "short": False}
]
}]
}
requests.post(self.webhook_url, json=payload)
class EmailAlertChannel:
def __init__(self, smtp_config, recipients):
self.smtp_config = smtp_config
self.recipients = recipients
def send(self, alert):
# Implementation for email alerts
pass
Optimization Strategies
Request Batching
Batch Request Implementation
class BatchRequestManager:
def __init__(self, api_client, batch_size=10, flush_interval=5):
self.api_client = api_client
self.batch_size = batch_size
self.flush_interval = flush_interval
self.pending_requests = []
self.last_flush = time.time()
def add_request(self, workflow_id, input_data, callback=None):
"""Add request to batch"""
request = {
"workflow_id": workflow_id,
"input": input_data,
"callback": callback,
"timestamp": time.time()
}
self.pending_requests.append(request)
# Check if we should flush
if (len(self.pending_requests) >= self.batch_size or
time.time() - self.last_flush > self.flush_interval):
self.flush_batch()
def flush_batch(self):
"""Flush pending requests as batch"""
if not self.pending_requests:
return
batch = self.pending_requests.copy()
self.pending_requests.clear()
self.last_flush = time.time()
# Group by workflow_id for efficiency
grouped_requests = {}
for request in batch:
workflow_id = request["workflow_id"]
if workflow_id not in grouped_requests:
grouped_requests[workflow_id] = []
grouped_requests[workflow_id].append(request)
# Process each group
for workflow_id, requests in grouped_requests.items():
self.process_batch_group(workflow_id, requests)
def process_batch_group(self, workflow_id, requests):
"""Process a group of requests for the same workflow"""
try:
# Prepare batch payload
batch_inputs = [req["input"] for req in requests]
# Make batch API call (if supported)
results = self.api_client.batch_run(workflow_id, batch_inputs)
# Call callbacks with results
for request, result in zip(requests, results):
if request["callback"]:
request["callback"](result)
except Exception as e:
# Handle batch failure - fall back to individual requests
print(f"Batch processing failed: {e}. Falling back to individual requests.")
for request in requests:
try:
result = self.api_client.run(
request["workflow_id"],
request["input"]
)
if request["callback"]:
request["callback"](result)
except Exception as individual_error:
if request["callback"]:
request["callback"]({"error": str(individual_error)})
Caching Strategies
Intelligent Response Caching
import hashlib
import json
from datetime import datetime, timedelta
class ResponseCache:
def __init__(self, ttl_seconds=3600, max_size=1000):
self.cache = {}
self.ttl_seconds = ttl_seconds
self.max_size = max_size
self.access_times = {}
def get_cache_key(self, workflow_id, input_data, variables=None):
"""Generate cache key for request"""
cache_data = {
"workflow_id": workflow_id,
"input": input_data,
"variables": variables or {}
}
cache_string = json.dumps(cache_data, sort_keys=True)
return hashlib.md5(cache_string.encode()).hexdigest()
def get(self, workflow_id, input_data, variables=None):
"""Get cached response if available"""
cache_key = self.get_cache_key(workflow_id, input_data, variables)
if cache_key in self.cache:
cached_item = self.cache[cache_key]
# Check if cache is still valid
if datetime.now() < cached_item["expires_at"]:
# Update access time
self.access_times[cache_key] = datetime.now()
return cached_item["response"]
else:
# Remove expired cache
del self.cache[cache_key]
if cache_key in self.access_times:
del self.access_times[cache_key]
return None
def set(self, workflow_id, input_data, response, variables=None):
"""Cache response"""
cache_key = self.get_cache_key(workflow_id, input_data, variables)
# Check cache size and evict if necessary
if len(self.cache) >= self.max_size:
self.evict_lru()
self.cache[cache_key] = {
"response": response,
"created_at": datetime.now(),
"expires_at": datetime.now() + timedelta(seconds=self.ttl_seconds)
}
self.access_times[cache_key] = datetime.now()
def evict_lru(self):
"""Evict least recently used cache entry"""
if not self.access_times:
return
# Find least recently used key
lru_key = min(self.access_times.keys(), key=lambda k: self.access_times[k])
# Remove from cache
if lru_key in self.cache:
del self.cache[lru_key]
del self.access_times[lru_key]
def clear_expired(self):
"""Clear all expired cache entries"""
current_time = datetime.now()
expired_keys = []
for key, cached_item in self.cache.items():
if current_time >= cached_item["expires_at"]:
expired_keys.append(key)
for key in expired_keys:
del self.cache[key]
if key in self.access_times:
del self.access_times[key]
def get_stats(self):
"""Get cache statistics"""
total_entries = len(self.cache)
expired_entries = sum(
1 for item in self.cache.values()
if datetime.now() >= item["expires_at"]
)
return {
"total_entries": total_entries,
"valid_entries": total_entries - expired_entries,
"expired_entries": expired_entries,
"max_size": self.max_size,
"utilization": total_entries / self.max_size * 100
}
Best Practices
Rate Limit Best Practices
Application Design
Implement exponential backoff for retries
Use request queuing for high-volume applications
Cache responses when appropriate
Batch requests when possible
Monitor rate limit usage continuously
Error Handling
Always check rate limit headers
Implement graceful degradation
Provide user feedback for delays
Log rate limiting events for analysis
Have fallback mechanisms ready
Performance Optimization
Optimize request frequency
Use efficient data structures
Implement connection pooling
Consider async/parallel processing
Regular performance monitoring
Monitoring and Alerting
Key Metrics to Track
Requests per minute/hour/day
Rate limit hit percentage
Average response times
Success/failure rates
Queue depths and wait times
Alert Thresholds
Rate limiting > 5% of requests
Usage > 80% of limits
Response time > 10 seconds
Queue depth > 100 requests
Success rate < 95%
Troubleshooting
Common Rate Limiting Issues
Sudden Rate Limit Hits
def diagnose_rate_limiting():
"""Diagnose rate limiting issues"""
issues = []
# Check request pattern
if high_burst_detected():
issues.append("High burst traffic detected - implement request smoothing")
# Check concurrent requests
if high_concurrency_detected():
issues.append("Too many concurrent requests - implement connection pooling")
# Check caching
if low_cache_hit_rate():
issues.append("Low cache hit rate - review caching strategy")
# Check batching
if individual_requests_high():
issues.append("Many individual requests - consider batch processing")
return issues
Performance Issues
Monitor request queuing delays
Check for memory leaks in rate limiters
Verify efficient data structures
Analyze request distribution patterns
Next Steps
After implementing rate limiting:
Monitor Usage: Track rate limit metrics continuously
Optimize Patterns: Adjust request patterns based on data
Scale Planning: Plan for growth and usage increases
Team Training: Educate team on rate limiting best practices
Regular Review: Periodically review and optimize strategies
Related Guides
API Overview: General API usage patterns
Authentication: API security
Webhooks: Event-driven alternatives
Effective rate limiting ensures reliable API usage while maximizing performance. Implement monitoring, caching, and intelligent retry strategies for optimal results.
Last updated