Commercial APIs
Commercial API model components provide access to various third-party language model providers and services.
Groq
This component generates text using Groq's language models.
To use this component in a flow, connect it as a Model in a flow like the Basic prompting flow, or select it as the Model Provider if you're using an Agent component.

In the Groq API Key field, paste your Groq API key. The Groq model component automatically retrieves a list of the latest models. To refresh your list of models, click .
In the Model field, select the model you want to use for your LLM. This example uses llama-3.1-8b-instant, which Groq recommends for real-time conversational interfaces.
For more information, see the Groq documentation.
Inputs
groq_api_key
SecretString
API key for the Groq API.
groq_api_base
String
Base URL path for API requests. Default: https://api.groq.com
.
max_tokens
Integer
The maximum number of tokens to generate.
temperature
Float
Controls randomness in the output. Range: [0.0, 1.0]
. Default: 0.1
.
n
Integer
Number of chat completions to generate for each prompt.
model_name
String
The name of the Groq model to use. Options are dynamically fetched from the Groq API.
tool_mode_enabled
Bool
If enabled, the component only displays models that work with tools.
Outputs
model
LanguageModel
An instance of ChatGroq configured with the specified parameters.
Cohere
This component generates text using Cohere's language models.
For more information, see the Cohere documentation.
Inputs
Cohere API Key
Cohere API Key
Your Cohere API key.
Max Tokens
Max Tokens
Specifies the maximum number of tokens to generate. Defaults to 256
.
Temperature
Temperature
Specifies the sampling temperature. Defaults to 0.75
.
Input Value
Input Value
Specifies the input text for text generation.
Outputs
model
LanguageModel
An instance of the Cohere model configured with the specified parameters.
Mistral
This component generates text using MistralAI LLMs.
For more information, see Mistral AI documentation.
Inputs
max_tokens
Integer
The maximum number of tokens to generate. Set to 0 for unlimited tokens (advanced).
model_name
String
The name of the Mistral AI model to use. Options include open-mixtral-8x7b
, open-mixtral-8x22b
, mistral-small-latest
, mistral-medium-latest
, mistral-large-latest
, and codestral-latest
. Default: codestral-latest
.
mistral_api_base
String
The base URL of the Mistral API. Defaults to https://api.mistral.ai/v1
(advanced).
api_key
SecretString
The Mistral API Key to use for authentication.
temperature
Float
Controls randomness in the output. Default: 0.5.
max_retries
Integer
Maximum number of retries for API calls. Default: 5 (advanced).
timeout
Integer
Timeout for API calls in seconds. Default: 60 (advanced).
max_concurrent_requests
Integer
Maximum number of concurrent API requests. Default: 3 (advanced).
top_p
Float
Nucleus sampling parameter. Default: 1 (advanced).
random_seed
Integer
Seed for random number generation. Default: 1 (advanced).
safe_mode
Boolean
Enables safe mode for content generation (advanced).
Outputs
model
LanguageModel
An instance of ChatMistralAI configured with the specified parameters.
DeepSeek
This component generates text using DeepSeek's language models.
For more information, see the DeepSeek documentation.
Inputs
max_tokens
Integer
Maximum number of tokens to generate. Set to 0
for unlimited. Range: 0-128000
.
model_kwargs
Dictionary
Additional keyword arguments for the model.
json_mode
Boolean
If True
, outputs JSON regardless of passing a schema.
model_name
String
The DeepSeek model to use. Default: deepseek-chat
.
api_base
String
Base URL for API requests. Default: https://api.deepseek.com
.
api_key
SecretString
Your DeepSeek API key for authentication.
temperature
Float
Controls randomness in responses. Range: [0.0, 2.0]
. Default: 1.0
.
seed
Integer
Number initialized for random number generation. Use the same seed integer for more reproducible results, and use a different seed number for more random results.
Outputs
model
LanguageModel
An instance of ChatOpenAI configured with the specified parameters.
Usage Notes
Fast Inference: Many commercial APIs offer optimized inference speeds
Latest Models: Access to cutting-edge models often before open source alternatives
Managed Service: No infrastructure management required
Pay-per-use: Cost scales with usage, suitable for production workloads
Last updated