Commercial Embeddings
Commercial embedding components provide access to advanced embedding models from leading AI companies and specialized providers.
Cohere Embeddings
This component generates embeddings using Cohere's advanced embedding models.
Usage
Cohere embedding features:
- Multilingual embeddings 
- Task-specific optimization 
- High-quality semantic understanding 
- Enterprise-grade performance 
- Flexible model options 
Inputs
model
Model
Cohere embedding model name
api_key
API Key
Cohere API key for authentication
input_type
Input Type
Type of input (search_document, search_query, classification, clustering)
Outputs
embeddings
Embeddings
Cohere embeddings instance
MistralAI Embeddings
This component provides embeddings through Mistral AI's embedding models.
Usage
Mistral AI embedding capabilities:
- Efficient embedding models 
- Multilingual support 
- Cost-effective processing 
- European AI compliance 
- High-performance inference 
Inputs
model
Model
Mistral AI embedding model
api_key
API Key
Mistral AI API key
endpoint
Endpoint
Custom endpoint URL (optional)
Outputs
embeddings
Embeddings
Mistral AI embeddings instance
NVIDIA Embeddings
This component generates embeddings using NVIDIA's AI models and infrastructure.
Usage
NVIDIA embedding features:
- GPU-accelerated processing 
- High-performance models 
- Enterprise deployment 
- Advanced optimization 
- Large-scale processing 
Inputs
model_name
Model Name
NVIDIA embedding model
api_key
API Key
NVIDIA API key
base_url
Base URL
NVIDIA API base URL
Outputs
embeddings
Embeddings
NVIDIA embeddings instance
Available Models
Cohere Models
- embed-english-v3.0: Advanced English embeddings
- embed-multilingual-v3.0: Multilingual embedding support
- embed-english-light-v3.0: Lightweight English model
- embed-multilingual-light-v3.0: Lightweight multilingual model
Mistral AI Models
- mistral-embed: General-purpose embedding model
- mistral-embed-large: High-capacity embedding model
NVIDIA Models
- NV-Embed-QA: Question-answering optimized embeddings
- e5-large-v2: General-purpose large embeddings
- nvolveqa_40k: Extended context embeddings
Task Optimization
Input Types
- search_document: Optimize for document indexing 
- search_query: Optimize for search queries 
- classification: Text classification tasks 
- clustering: Document clustering applications 
Use Cases
- Semantic Search: High-quality similarity matching 
- Document Retrieval: Efficient document finding 
- Content Classification: Automated categorization 
- Similarity Analysis: Content comparison and analysis 
Usage Notes
- Performance: High-quality embeddings with fast inference 
- Scalability: Enterprise-grade scaling capabilities 
- Multilingual: Comprehensive language support 
- Task Specific: Optimized for different use cases 
- Cost Effective: Competitive pricing models 
- API Integration: Simple REST API integration 
Last updated