Commercial Embeddings
Commercial embedding components provide access to advanced embedding models from leading AI companies and specialized providers.
Cohere Embeddings
This component generates embeddings using Cohere's advanced embedding models.
Usage
Cohere embedding features:
Multilingual embeddings
Task-specific optimization
High-quality semantic understanding
Enterprise-grade performance
Flexible model options
Inputs
model
Model
Cohere embedding model name
api_key
API Key
Cohere API key for authentication
input_type
Input Type
Type of input (search_document, search_query, classification, clustering)
Outputs
embeddings
Embeddings
Cohere embeddings instance
MistralAI Embeddings
This component provides embeddings through Mistral AI's embedding models.
Usage
Mistral AI embedding capabilities:
Efficient embedding models
Multilingual support
Cost-effective processing
European AI compliance
High-performance inference
Inputs
model
Model
Mistral AI embedding model
api_key
API Key
Mistral AI API key
endpoint
Endpoint
Custom endpoint URL (optional)
Outputs
embeddings
Embeddings
Mistral AI embeddings instance
NVIDIA Embeddings
This component generates embeddings using NVIDIA's AI models and infrastructure.
Usage
NVIDIA embedding features:
GPU-accelerated processing
High-performance models
Enterprise deployment
Advanced optimization
Large-scale processing
Inputs
model_name
Model Name
NVIDIA embedding model
api_key
API Key
NVIDIA API key
base_url
Base URL
NVIDIA API base URL
Outputs
embeddings
Embeddings
NVIDIA embeddings instance
Available Models
Cohere Models
embed-english-v3.0: Advanced English embeddingsembed-multilingual-v3.0: Multilingual embedding supportembed-english-light-v3.0: Lightweight English modelembed-multilingual-light-v3.0: Lightweight multilingual model
Mistral AI Models
mistral-embed: General-purpose embedding modelmistral-embed-large: High-capacity embedding model
NVIDIA Models
NV-Embed-QA: Question-answering optimized embeddingse5-large-v2: General-purpose large embeddingsnvolveqa_40k: Extended context embeddings
Task Optimization
Input Types
search_document: Optimize for document indexing
search_query: Optimize for search queries
classification: Text classification tasks
clustering: Document clustering applications
Use Cases
Semantic Search: High-quality similarity matching
Document Retrieval: Efficient document finding
Content Classification: Automated categorization
Similarity Analysis: Content comparison and analysis
Usage Notes
Performance: High-quality embeddings with fast inference
Scalability: Enterprise-grade scaling capabilities
Multilingual: Comprehensive language support
Task Specific: Optimized for different use cases
Cost Effective: Competitive pricing models
API Integration: Simple REST API integration
Last updated