Cloud Vector Databases

Cloud vector databases provide scalable, managed vector storage solutions with enterprise-grade features and global availability.

Pinecone

Pinecone is a fully managed vector database service optimized for machine learning applications.

Usage

Pinecone provides:

  • Fully managed vector storage

  • Real-time indexing and search

  • Horizontal scaling

  • High-performance similarity search

  • Enterprise security features

Inputs

Name
Display Name
Info

api_key

API Key

Pinecone API key for authentication

environment

Environment

Pinecone environment (e.g., us-east1-gcp)

index_name

Index Name

Name of the Pinecone index

namespace

Namespace

Optional namespace within the index

Outputs

Name
Display Name
Info

vector_store

Vector Store

Configured Pinecone vector store

Supabase

Supabase provides vector storage capabilities with PostgreSQL and pgvector extension.

Usage

Supabase vector features:

  • PostgreSQL-based vector storage

  • SQL query capabilities

  • Real-time subscriptions

  • Row-level security

  • Built-in authentication

Inputs

Name
Display Name
Info

supabase_url

Supabase URL

Supabase project URL

supabase_key

API Key

Supabase API key

table_name

Table Name

Database table for vector storage

query_name

Query Name

Custom query function name

Outputs

Name
Display Name
Info

vector_store

Vector Store

Configured Supabase vector store

Upstash

Upstash provides serverless vector database services with Redis compatibility.

Usage

Upstash capabilities:

  • Serverless vector storage

  • Redis-compatible interface

  • Global edge deployment

  • Automatic scaling

  • Pay-per-use pricing

Inputs

Name
Display Name
Info

url

Upstash URL

Upstash vector database URL

token

Token

Upstash authentication token

index_name

Index Name

Vector index name

namespace

Namespace

Optional namespace for organization

Outputs

Name
Display Name
Info

vector_store

Vector Store

Configured Upstash vector store

Vectara

Vectara offers a complete platform for neural search and retrieval-augmented generation.

Usage

Vectara platform features:

  • Neural search capabilities

  • Built-in embedding models

  • Retrieval-augmented generation

  • Multi-modal search

  • Enterprise security

Inputs

Name
Display Name
Info

customer_id

Customer ID

Vectara customer identifier

corpus_id

Corpus ID

Vectara corpus identifier

api_key

API Key

Vectara API key

Outputs

Name
Display Name
Info

vector_store

Vector Store

Configured Vectara vector store

Specialized search component for Vectara with advanced query capabilities.

Usage

Advanced Vectara search:

  • Semantic search queries

  • Hybrid search capabilities

  • Result re-ranking

  • Query expansion

  • Multi-corpus search

Inputs

Name
Display Name
Info

search_query

Search Query

Natural language search query

num_results

Results Count

Number of results to return

metadata_filter

Metadata Filter

Optional metadata filtering

Outputs

Name
Display Name
Info

search_results

Search Results

Ranked search results

Usage Notes

  • Managed Infrastructure: Cloud providers handle scaling and maintenance

  • Global Availability: Multi-region deployment options

  • Enterprise Features: Advanced security, compliance, and monitoring

  • Performance Optimization: Built-in performance tuning and optimization

  • API Integration: RESTful APIs and SDK support

  • Cost Efficiency: Pay-as-you-scale pricing models

Last updated