Scaling
Scale your BroxiAI applications to handle growing traffic and complex workloads
Learn how to scale your BroxiAI workflows from prototype to enterprise-grade applications handling millions of requests.
Scaling Fundamentals
Understanding Scale Requirements
Traffic Patterns
Scale Dimensions:
Users:
- Concurrent active users
- Peak vs average load
- Geographic distribution
- Usage patterns
Requests:
- Requests per second (RPS)
- Message volume
- File upload frequency
- API call patterns
Data:
- Document storage size
- Vector database scale
- Memory requirements
- Processing complexity
Performance Targets
Performance Goals:
Response Time:
- p50: < 2 seconds
- p95: < 5 seconds
- p99: < 10 seconds
Throughput:
- 100+ concurrent users
- 1000+ requests/minute
- 99.9% availability
Resource Efficiency:
- Cost per request
- Token utilization
- Infrastructure efficiency
Horizontal Scaling Strategies
Load Distribution
Request Load Balancing

Geographic Distribution
Multi-Region Setup:
Primary Region (US-East):
- Main user base
- Primary data storage
- Full feature set
Secondary Region (EU-West):
- European users
- Data residency compliance
- Reduced latency
Tertiary Region (Asia-Pacific):
- APAC users
- Local language support
- Regional compliance
Session Management
Stateless Design
{
"session_strategy": {
"type": "stateless",
"storage": "external_redis",
"sticky_sessions": false,
"session_timeout": 3600,
"distribution": "round_robin"
}
}
Session Storage Options
Redis Cluster: Distributed session storage
Database Sessions: Persistent session data
JWT Tokens: Stateless authentication
Memory Caching: Fast session access
Vertical Scaling Optimization
Resource Optimization
CPU Optimization
CPU Scaling:
AI Model Inference:
- Use GPU acceleration when available
- Optimize model selection
- Implement model caching
- Batch processing for efficiency
Text Processing:
- Parallel document processing
- Efficient chunking algorithms
- Streaming for large files
- Memory-mapped file access
Memory Management
Memory Optimization:
Vector Storage:
- Optimize embedding dimensions
- Use quantized vectors
- Implement memory mapping
- Efficient index structures
Conversation Memory:
- Smart memory limits
- Conversation summarization
- Automatic cleanup
- Memory pooling
Storage Scaling
Vector Database Scaling
{
"vector_db_scaling": {
"sharding_strategy": "by_namespace",
"replication_factor": 2,
"index_optimization": "hnsw",
"memory_mapping": true,
"compression": "pq",
"backup_strategy": "incremental"
}
}
File Storage Scaling
File Storage:
Document Storage:
- Distributed file systems
- Content delivery networks
- Tiered storage (hot/cold)
- Automatic compression
Cache Management:
- Multi-level caching
- Cache invalidation strategies
- Regional cache distribution
- Edge caching
Auto-Scaling Implementation
Traffic-Based Scaling
Auto-Scaling Configuration
auto_scaling:
triggers:
cpu_threshold: 70%
memory_threshold: 80%
response_time: 5s
queue_depth: 100
scaling_policies:
scale_up:
instances: +2
cooldown: 300s
max_instances: 20
scale_down:
instances: -1
cooldown: 600s
min_instances: 2
health_checks:
interval: 30s
timeout: 10s
healthy_threshold: 2
unhealthy_threshold: 3
Predictive Scaling
# Example: Predictive scaling algorithm
def predict_scaling_needs():
historical_data = get_usage_patterns()
current_time = datetime.now()
# Analyze patterns
if is_peak_hour(current_time):
recommended_instances = calculate_peak_capacity()
elif is_maintenance_window(current_time):
recommended_instances = minimum_instances()
else:
recommended_instances = predict_from_history(historical_data)
return {
"recommended_instances": recommended_instances,
"confidence": calculate_confidence(),
"scaling_window": get_optimal_scaling_time()
}
Cost-Optimized Scaling
Spot Instance Strategy
cost_optimization:
instance_types:
primary: "on_demand"
secondary: "spot_instances"
percentage_spot: 60%
scaling_priorities:
1: "cost_efficiency"
2: "performance"
3: "availability"
budget_limits:
daily_max: "$200"
monthly_max: "$5000"
alert_threshold: "80%"
Component-Level Scaling
AI Model Scaling
Model Selection Strategy
Model Scaling:
High Volume:
primary: "gpt-3.5-turbo"
fallback: "gpt-3.5-turbo-16k"
cost: "low"
speed: "fast"
High Quality:
primary: "gpt-4"
fallback: "gpt-3.5-turbo"
cost: "high"
speed: "moderate"
Specialized Tasks:
embedding: "text-embedding-ada-002"
classification: "fine-tuned-model"
translation: "specialized-model"
Model Caching
{
"model_caching": {
"response_cache": {
"enabled": true,
"ttl": 3600,
"size_limit": "1GB",
"eviction_policy": "lru"
},
"embedding_cache": {
"enabled": true,
"ttl": 86400,
"size_limit": "5GB",
"persistent": true
}
}
}
Vector Database Scaling
Sharding Strategies
Vector DB Sharding:
By Namespace:
strategy: "namespace_based"
shard_key: "namespace"
benefits: "logical separation"
By Hash:
strategy: "hash_based"
shard_key: "document_id"
benefits: "even distribution"
By Range:
strategy: "range_based"
shard_key: "timestamp"
benefits: "time-based queries"
Index Optimization
{
"index_config": {
"algorithm": "hnsw",
"m": 16,
"ef_construction": 200,
"ef_search": 100,
"max_connections": 32,
"level_multiplier": 1.2
}
}
Performance Optimization
Query Optimization
Vector Search Optimization
# Optimized vector search
def optimized_vector_search(query_vector, top_k=5):
# Pre-filter based on metadata
metadata_filter = {
"timestamp": {"$gte": last_month},
"category": {"$in": relevant_categories}
}
# Use optimized search parameters
search_params = {
"ef": min(top_k * 2, 100), # Adaptive ef
"nprobe": min(top_k, 20) # Adaptive nprobe
}
# Parallel search across shards
results = parallel_search(
query_vector=query_vector,
top_k=top_k,
filter=metadata_filter,
params=search_params
)
return results
Caching Strategies
Multi-Level Caching:
L1 - Application Cache:
type: "in_memory"
size: "500MB"
ttl: "300s"
hit_ratio_target: "90%"
L2 - Distributed Cache:
type: "redis_cluster"
size: "10GB"
ttl: "3600s"
hit_ratio_target: "70%"
L3 - CDN Cache:
type: "edge_cache"
size: "unlimited"
ttl: "86400s"
geographic: true
Batch Processing
Batch Optimization
class BatchProcessor:
def __init__(self, batch_size=100, max_wait_time=5):
self.batch_size = batch_size
self.max_wait_time = max_wait_time
self.pending_requests = []
self.last_batch_time = time.time()
async def process_request(self, request):
self.pending_requests.append(request)
# Trigger batch processing
if (len(self.pending_requests) >= self.batch_size or
time.time() - self.last_batch_time > self.max_wait_time):
await self.process_batch()
async def process_batch(self):
batch = self.pending_requests[:self.batch_size]
self.pending_requests = self.pending_requests[self.batch_size:]
# Process batch efficiently
results = await self.batch_inference(batch)
# Return results to individual requests
for request, result in zip(batch, results):
request.set_result(result)
self.last_batch_time = time.time()
Database Scaling
Vector Database Architecture
Distributed Architecture
graph TB
A[Application Layer] --> B[Load Balancer]
B --> C[Shard 1<br/>Namespace: users]
B --> D[Shard 2<br/>Namespace: docs]
B --> E[Shard 3<br/>Namespace: products]
C --> F[Replica 1A]
C --> G[Replica 1B]
D --> H[Replica 2A]
D --> I[Replica 2B]
E --> J[Replica 3A]
E --> K[Replica 3B]
Replication Strategy
Replication Config:
Strategy: "master_slave"
Replicas: 2
Sync_Mode: "async"
Failover: "automatic"
Read_Distribution:
master: "30%"
slave_1: "35%"
slave_2: "35%
Consistency: "eventual"
Max_Lag: "100ms"
Data Partitioning
Partitioning Strategies
{
"partitioning": {
"strategy": "hybrid",
"primary_key": "namespace",
"secondary_key": "timestamp",
"partition_size": "10GB",
"hot_partitions": 3,
"cold_storage_after": "90d"
}
}
Monitoring Scale
Scaling Metrics
Key Performance Indicators
Scaling KPIs:
Throughput:
- Requests per second
- Messages per minute
- Documents processed per hour
- Concurrent users
Latency:
- Response time percentiles
- Queue wait times
- Database query times
- AI model inference time
Resource Utilization:
- CPU usage across instances
- Memory consumption
- Network bandwidth
- Storage IOPS
Business Metrics:
- Cost per request
- User satisfaction
- Feature adoption
- Revenue per user
Scaling Dashboards
{
"scaling_dashboard": {
"real_time_metrics": [
"current_rps",
"active_instances",
"response_time_p95",
"error_rate"
],
"capacity_planning": [
"projected_growth",
"resource_utilization_trend",
"cost_projection",
"scaling_recommendations"
],
"alerts": [
"scale_up_needed",
"scale_down_opportunity",
"performance_degradation",
"cost_threshold_exceeded"
]
}
}
Cost Management at Scale
Cost Optimization Strategies
Resource Right-Sizing
Cost Optimization:
Instance Types:
compute_optimized: "CPU-intensive workloads"
memory_optimized: "Large vector operations"
general_purpose: "Balanced workloads"
spot_instances: "Non-critical processing"
Storage Tiers:
hot_storage: "Frequently accessed data"
warm_storage: "Occasionally accessed data"
cold_storage: "Archive and backup"
Network Optimization:
cdn_usage: "Static content delivery"
regional_caching: "Reduce cross-region traffic"
compression: "Reduce bandwidth costs"
Usage-Based Scaling
def calculate_optimal_scaling():
current_usage = get_current_metrics()
cost_per_instance = get_instance_cost()
revenue_per_request = get_revenue_metrics()
# Calculate optimal instance count
optimal_instances = optimize_cost_performance(
usage=current_usage,
instance_cost=cost_per_instance,
revenue=revenue_per_request,
target_profit_margin=0.70
)
return {
"recommended_instances": optimal_instances,
"cost_savings": calculate_savings(),
"performance_impact": estimate_impact()
}
Disaster Recovery and High Availability
Multi-Region Deployment
Active-Active Configuration
Multi_Region_Setup:
Primary_Region: "us-east-1"
Secondary_Region: "eu-west-1"
Tertiary_Region: "ap-southeast-1"
Data_Replication:
strategy: "active_active"
sync_mode: "async"
consistency: "eventual"
max_lag: "5s"
Traffic_Distribution:
geographic_routing: true
health_check_failover: true
manual_failover: true
Backup and Recovery
{
"backup_strategy": {
"vector_db": {
"frequency": "hourly",
"retention": "30d",
"compression": true,
"encryption": true
},
"configurations": {
"frequency": "on_change",
"retention": "unlimited",
"versioning": true
},
"user_data": {
"frequency": "daily",
"retention": "1y",
"anonymization": true
}
}
}
Testing at Scale
Load Testing
Load Test Configuration
Load_Testing:
Test_Scenarios:
normal_load:
users: 1000
duration: "30m"
ramp_up: "5m"
peak_load:
users: 5000
duration: "15m"
ramp_up: "2m"
stress_test:
users: 10000
duration: "10m"
ramp_up: "1m"
Test_Data:
variety: "realistic_mix"
document_sizes: "100KB-10MB"
query_complexity: "simple_to_complex"
geographic_distribution: true
Performance Benchmarks
# Load testing script
async def run_load_test():
test_config = {
"concurrent_users": 1000,
"requests_per_user": 50,
"test_duration": 1800, # 30 minutes
"ramp_up_time": 300 # 5 minutes
}
results = await execute_load_test(test_config)
return {
"throughput": results.requests_per_second,
"response_times": results.response_time_percentiles,
"error_rate": results.error_percentage,
"resource_usage": results.system_metrics,
"bottlenecks": identify_bottlenecks(results)
}
Scaling Best Practices
Design Principles
Scalability Principles
Stateless Design: Avoid server-side state
Horizontal Scaling: Scale out, not just up
Asynchronous Processing: Use queues and workers
Caching Strategy: Cache at multiple levels
Database Optimization: Optimize queries and indexes
Resource Monitoring: Continuous performance tracking
Anti-Patterns to Avoid
Premature optimization
Single points of failure
Tight coupling between components
Ignoring data consistency requirements
Over-engineering for scale
Implementation Checklist
Pre-Scaling Checklist
Post-Scaling Verification
Scaling Roadmap
Phase 1: Foundation (0-1K Users)
Basic monitoring setup
Simple horizontal scaling
Core caching implementation
Performance baseline
Phase 2: Growth (1K-10K Users)
Auto-scaling implementation
Database optimization
Advanced caching
Multi-region consideration
Phase 3: Scale (10K-100K Users)
Multi-region deployment
Advanced optimization
Predictive scaling
Cost optimization
Phase 4: Enterprise (100K+ Users)
Global distribution
Advanced AI optimization
Custom infrastructure
Enterprise features
Next Steps
After implementing scaling:
Monitor Performance: Track scaling effectiveness
Optimize Costs: Continuous cost optimization
Plan Capacity: Predictive capacity planning
Test Regularly: Regular load testing
Update Documentation: Keep scaling docs current
Related Guides
Monitoring: Track scaling metrics
Production Checklist: Scaling requirements
Best Practices: Performance optimization
Successful scaling requires careful planning, continuous monitoring, and iterative optimization. Start with solid foundations and scale incrementally based on real usage patterns.
Last updated