Scaling

Scale your BroxiAI applications to handle growing traffic and complex workloads

Learn how to scale your BroxiAI workflows from prototype to enterprise-grade applications handling millions of requests.

Scaling Fundamentals

Understanding Scale Requirements

Traffic Patterns

Scale Dimensions:
  Users:
    - Concurrent active users
    - Peak vs average load
    - Geographic distribution
    - Usage patterns

  Requests:
    - Requests per second (RPS)
    - Message volume
    - File upload frequency
    - API call patterns

  Data:
    - Document storage size
    - Vector database scale
    - Memory requirements
    - Processing complexity

Performance Targets

Performance Goals:
  Response Time:
    - p50: < 2 seconds
    - p95: < 5 seconds
    - p99: < 10 seconds

  Throughput:
    - 100+ concurrent users
    - 1000+ requests/minute
    - 99.9% availability

  Resource Efficiency:
    - Cost per request
    - Token utilization
    - Infrastructure efficiency

Horizontal Scaling Strategies

Load Distribution

Request Load Balancing

Geographic Distribution

Multi-Region Setup:
  Primary Region (US-East):
    - Main user base
    - Primary data storage
    - Full feature set

  Secondary Region (EU-West):
    - European users
    - Data residency compliance
    - Reduced latency

  Tertiary Region (Asia-Pacific):
    - APAC users
    - Local language support
    - Regional compliance

Session Management

Stateless Design

{
  "session_strategy": {
    "type": "stateless",
    "storage": "external_redis",
    "sticky_sessions": false,
    "session_timeout": 3600,
    "distribution": "round_robin"
  }
}

Session Storage Options

  • Redis Cluster: Distributed session storage

  • Database Sessions: Persistent session data

  • JWT Tokens: Stateless authentication

  • Memory Caching: Fast session access

Vertical Scaling Optimization

Resource Optimization

CPU Optimization

CPU Scaling:
  AI Model Inference:
    - Use GPU acceleration when available
    - Optimize model selection
    - Implement model caching
    - Batch processing for efficiency

  Text Processing:
    - Parallel document processing
    - Efficient chunking algorithms
    - Streaming for large files
    - Memory-mapped file access

Memory Management

Memory Optimization:
  Vector Storage:
    - Optimize embedding dimensions
    - Use quantized vectors
    - Implement memory mapping
    - Efficient index structures

  Conversation Memory:
    - Smart memory limits
    - Conversation summarization
    - Automatic cleanup
    - Memory pooling

Storage Scaling

Vector Database Scaling

{
  "vector_db_scaling": {
    "sharding_strategy": "by_namespace",
    "replication_factor": 2,
    "index_optimization": "hnsw",
    "memory_mapping": true,
    "compression": "pq",
    "backup_strategy": "incremental"
  }
}

File Storage Scaling

File Storage:
  Document Storage:
    - Distributed file systems
    - Content delivery networks
    - Tiered storage (hot/cold)
    - Automatic compression

  Cache Management:
    - Multi-level caching
    - Cache invalidation strategies
    - Regional cache distribution
    - Edge caching

Auto-Scaling Implementation

Traffic-Based Scaling

Auto-Scaling Configuration

auto_scaling:
  triggers:
    cpu_threshold: 70%
    memory_threshold: 80%
    response_time: 5s
    queue_depth: 100

  scaling_policies:
    scale_up:
      instances: +2
      cooldown: 300s
      max_instances: 20

    scale_down:
      instances: -1
      cooldown: 600s
      min_instances: 2

  health_checks:
    interval: 30s
    timeout: 10s
    healthy_threshold: 2
    unhealthy_threshold: 3

Predictive Scaling

# Example: Predictive scaling algorithm
def predict_scaling_needs():
    historical_data = get_usage_patterns()
    current_time = datetime.now()
    
    # Analyze patterns
    if is_peak_hour(current_time):
        recommended_instances = calculate_peak_capacity()
    elif is_maintenance_window(current_time):
        recommended_instances = minimum_instances()
    else:
        recommended_instances = predict_from_history(historical_data)
    
    return {
        "recommended_instances": recommended_instances,
        "confidence": calculate_confidence(),
        "scaling_window": get_optimal_scaling_time()
    }

Cost-Optimized Scaling

Spot Instance Strategy

cost_optimization:
  instance_types:
    primary: "on_demand"
    secondary: "spot_instances"
    percentage_spot: 60%

  scaling_priorities:
    1: "cost_efficiency"
    2: "performance"
    3: "availability"

  budget_limits:
    daily_max: "$200"
    monthly_max: "$5000"
    alert_threshold: "80%"

Component-Level Scaling

AI Model Scaling

Model Selection Strategy

Model Scaling:
  High Volume:
    primary: "gpt-3.5-turbo"
    fallback: "gpt-3.5-turbo-16k"
    cost: "low"
    speed: "fast"

  High Quality:
    primary: "gpt-4"
    fallback: "gpt-3.5-turbo"
    cost: "high"
    speed: "moderate"

  Specialized Tasks:
    embedding: "text-embedding-ada-002"
    classification: "fine-tuned-model"
    translation: "specialized-model"

Model Caching

{
  "model_caching": {
    "response_cache": {
      "enabled": true,
      "ttl": 3600,
      "size_limit": "1GB",
      "eviction_policy": "lru"
    },
    "embedding_cache": {
      "enabled": true,
      "ttl": 86400,
      "size_limit": "5GB",
      "persistent": true
    }
  }
}

Vector Database Scaling

Sharding Strategies

Vector DB Sharding:
  By Namespace:
    strategy: "namespace_based"
    shard_key: "namespace"
    benefits: "logical separation"

  By Hash:
    strategy: "hash_based"
    shard_key: "document_id"
    benefits: "even distribution"

  By Range:
    strategy: "range_based"
    shard_key: "timestamp"
    benefits: "time-based queries"

Index Optimization

{
  "index_config": {
    "algorithm": "hnsw",
    "m": 16,
    "ef_construction": 200,
    "ef_search": 100,
    "max_connections": 32,
    "level_multiplier": 1.2
  }
}

Performance Optimization

Query Optimization

Vector Search Optimization

# Optimized vector search
def optimized_vector_search(query_vector, top_k=5):
    # Pre-filter based on metadata
    metadata_filter = {
        "timestamp": {"$gte": last_month},
        "category": {"$in": relevant_categories}
    }
    
    # Use optimized search parameters
    search_params = {
        "ef": min(top_k * 2, 100),  # Adaptive ef
        "nprobe": min(top_k, 20)    # Adaptive nprobe
    }
    
    # Parallel search across shards
    results = parallel_search(
        query_vector=query_vector,
        top_k=top_k,
        filter=metadata_filter,
        params=search_params
    )
    
    return results

Caching Strategies

Multi-Level Caching:
  L1 - Application Cache:
    type: "in_memory"
    size: "500MB"
    ttl: "300s"
    hit_ratio_target: "90%"

  L2 - Distributed Cache:
    type: "redis_cluster"
    size: "10GB"
    ttl: "3600s"
    hit_ratio_target: "70%"

  L3 - CDN Cache:
    type: "edge_cache"
    size: "unlimited"
    ttl: "86400s"
    geographic: true

Batch Processing

Batch Optimization

class BatchProcessor:
    def __init__(self, batch_size=100, max_wait_time=5):
        self.batch_size = batch_size
        self.max_wait_time = max_wait_time
        self.pending_requests = []
        self.last_batch_time = time.time()
    
    async def process_request(self, request):
        self.pending_requests.append(request)
        
        # Trigger batch processing
        if (len(self.pending_requests) >= self.batch_size or 
            time.time() - self.last_batch_time > self.max_wait_time):
            await self.process_batch()
    
    async def process_batch(self):
        batch = self.pending_requests[:self.batch_size]
        self.pending_requests = self.pending_requests[self.batch_size:]
        
        # Process batch efficiently
        results = await self.batch_inference(batch)
        
        # Return results to individual requests
        for request, result in zip(batch, results):
            request.set_result(result)
        
        self.last_batch_time = time.time()

Database Scaling

Vector Database Architecture

Distributed Architecture

graph TB
    A[Application Layer] --> B[Load Balancer]
    B --> C[Shard 1<br/>Namespace: users]
    B --> D[Shard 2<br/>Namespace: docs]
    B --> E[Shard 3<br/>Namespace: products]
    
    C --> F[Replica 1A]
    C --> G[Replica 1B]
    
    D --> H[Replica 2A]
    D --> I[Replica 2B]
    
    E --> J[Replica 3A]
    E --> K[Replica 3B]

Replication Strategy

Replication Config:
  Strategy: "master_slave"
  Replicas: 2
  Sync_Mode: "async"
  Failover: "automatic"
  
  Read_Distribution:
    master: "30%"
    slave_1: "35%"
    slave_2: "35%
  
  Consistency: "eventual"
  Max_Lag: "100ms"

Data Partitioning

Partitioning Strategies

{
  "partitioning": {
    "strategy": "hybrid",
    "primary_key": "namespace",
    "secondary_key": "timestamp",
    "partition_size": "10GB",
    "hot_partitions": 3,
    "cold_storage_after": "90d"
  }
}

Monitoring Scale

Scaling Metrics

Key Performance Indicators

Scaling KPIs:
  Throughput:
    - Requests per second
    - Messages per minute
    - Documents processed per hour
    - Concurrent users

  Latency:
    - Response time percentiles
    - Queue wait times
    - Database query times
    - AI model inference time

  Resource Utilization:
    - CPU usage across instances
    - Memory consumption
    - Network bandwidth
    - Storage IOPS

  Business Metrics:
    - Cost per request
    - User satisfaction
    - Feature adoption
    - Revenue per user

Scaling Dashboards

{
  "scaling_dashboard": {
    "real_time_metrics": [
      "current_rps",
      "active_instances",
      "response_time_p95",
      "error_rate"
    ],
    "capacity_planning": [
      "projected_growth",
      "resource_utilization_trend",
      "cost_projection",
      "scaling_recommendations"
    ],
    "alerts": [
      "scale_up_needed",
      "scale_down_opportunity",
      "performance_degradation",
      "cost_threshold_exceeded"
    ]
  }
}

Cost Management at Scale

Cost Optimization Strategies

Resource Right-Sizing

Cost Optimization:
  Instance Types:
    compute_optimized: "CPU-intensive workloads"
    memory_optimized: "Large vector operations"
    general_purpose: "Balanced workloads"
    spot_instances: "Non-critical processing"

  Storage Tiers:
    hot_storage: "Frequently accessed data"
    warm_storage: "Occasionally accessed data"
    cold_storage: "Archive and backup"

  Network Optimization:
    cdn_usage: "Static content delivery"
    regional_caching: "Reduce cross-region traffic"
    compression: "Reduce bandwidth costs"

Usage-Based Scaling

def calculate_optimal_scaling():
    current_usage = get_current_metrics()
    cost_per_instance = get_instance_cost()
    revenue_per_request = get_revenue_metrics()
    
    # Calculate optimal instance count
    optimal_instances = optimize_cost_performance(
        usage=current_usage,
        instance_cost=cost_per_instance,
        revenue=revenue_per_request,
        target_profit_margin=0.70
    )
    
    return {
        "recommended_instances": optimal_instances,
        "cost_savings": calculate_savings(),
        "performance_impact": estimate_impact()
    }

Disaster Recovery and High Availability

Multi-Region Deployment

Active-Active Configuration

Multi_Region_Setup:
  Primary_Region: "us-east-1"
  Secondary_Region: "eu-west-1"
  Tertiary_Region: "ap-southeast-1"

  Data_Replication:
    strategy: "active_active"
    sync_mode: "async"
    consistency: "eventual"
    max_lag: "5s"

  Traffic_Distribution:
    geographic_routing: true
    health_check_failover: true
    manual_failover: true

Backup and Recovery

{
  "backup_strategy": {
    "vector_db": {
      "frequency": "hourly",
      "retention": "30d",
      "compression": true,
      "encryption": true
    },
    "configurations": {
      "frequency": "on_change",
      "retention": "unlimited",
      "versioning": true
    },
    "user_data": {
      "frequency": "daily",
      "retention": "1y",
      "anonymization": true
    }
  }
}

Testing at Scale

Load Testing

Load Test Configuration

Load_Testing:
  Test_Scenarios:
    normal_load:
      users: 1000
      duration: "30m"
      ramp_up: "5m"
      
    peak_load:
      users: 5000
      duration: "15m"
      ramp_up: "2m"
      
    stress_test:
      users: 10000
      duration: "10m"
      ramp_up: "1m"

  Test_Data:
    variety: "realistic_mix"
    document_sizes: "100KB-10MB"
    query_complexity: "simple_to_complex"
    geographic_distribution: true

Performance Benchmarks

# Load testing script
async def run_load_test():
    test_config = {
        "concurrent_users": 1000,
        "requests_per_user": 50,
        "test_duration": 1800,  # 30 minutes
        "ramp_up_time": 300     # 5 minutes
    }
    
    results = await execute_load_test(test_config)
    
    return {
        "throughput": results.requests_per_second,
        "response_times": results.response_time_percentiles,
        "error_rate": results.error_percentage,
        "resource_usage": results.system_metrics,
        "bottlenecks": identify_bottlenecks(results)
    }

Scaling Best Practices

Design Principles

Scalability Principles

  1. Stateless Design: Avoid server-side state

  2. Horizontal Scaling: Scale out, not just up

  3. Asynchronous Processing: Use queues and workers

  4. Caching Strategy: Cache at multiple levels

  5. Database Optimization: Optimize queries and indexes

  6. Resource Monitoring: Continuous performance tracking

Anti-Patterns to Avoid

  • Premature optimization

  • Single points of failure

  • Tight coupling between components

  • Ignoring data consistency requirements

  • Over-engineering for scale

Implementation Checklist

Pre-Scaling Checklist

Post-Scaling Verification

Scaling Roadmap

Phase 1: Foundation (0-1K Users)

  • Basic monitoring setup

  • Simple horizontal scaling

  • Core caching implementation

  • Performance baseline

Phase 2: Growth (1K-10K Users)

  • Auto-scaling implementation

  • Database optimization

  • Advanced caching

  • Multi-region consideration

Phase 3: Scale (10K-100K Users)

  • Multi-region deployment

  • Advanced optimization

  • Predictive scaling

  • Cost optimization

Phase 4: Enterprise (100K+ Users)

  • Global distribution

  • Advanced AI optimization

  • Custom infrastructure

  • Enterprise features

Next Steps

After implementing scaling:

  1. Monitor Performance: Track scaling effectiveness

  2. Optimize Costs: Continuous cost optimization

  3. Plan Capacity: Predictive capacity planning

  4. Test Regularly: Regular load testing

  5. Update Documentation: Keep scaling docs current


Last updated