Customer Support Agent
Build an intelligent customer support system with BroxiAI for automated ticket handling and resolution
Learn how to create a comprehensive AI-powered customer support system that can handle inquiries, escalate complex issues, and provide 24/7 assistance to your customers.
What You'll Build
A sophisticated customer support system that:
Handles common customer inquiries automatically
Accesses knowledge base and documentation
Escalates complex issues to human agents
Integrates with ticketing systems
Provides multi-language support
Tracks customer satisfaction
Prerequisites
BroxiAI account with API access
OpenAI API key or other LLM provider
Vector database (Pinecone recommended)
Customer support knowledge base
Integration access (Zendesk, Freshdesk, etc.)
Architecture Overview

Step 1: Set Up Knowledge Base
Document Preparation
Organize Support Content
Knowledge Base Structure:
FAQ:
- Common questions and answers
- Product information
- Pricing and billing
- Technical troubleshooting
Procedures:
- Step-by-step guides
- Installation instructions
- Configuration tutorials
- Best practices
Policies:
- Return and refund policies
- Terms of service
- Privacy policy
- Service level agreements
Document Processing Pipeline
# Document ingestion workflow
knowledge_base_pipeline = {
"components": [
{
"name": "Document Loader",
"type": "FileLoader",
"config": {
"supported_formats": [".pdf", ".docx", ".md", ".txt"],
"extract_metadata": True,
"preserve_structure": True
}
},
{
"name": "Content Splitter",
"type": "RecursiveTextSplitter",
"config": {
"chunk_size": 800,
"chunk_overlap": 100,
"separators": ["\n\n", "\n", ". ", " "],
"keep_separator": True
}
},
{
"name": "Metadata Enrichment",
"type": "MetadataProcessor",
"config": {
"extract_categories": True,
"add_timestamps": True,
"source_attribution": True
}
},
{
"name": "Embeddings",
"type": "OpenAIEmbeddings",
"config": {
"model": "text-embedding-ada-002",
"batch_size": 1000
}
},
{
"name": "Vector Store",
"type": "Pinecone",
"config": {
"index_name": "customer-support-kb",
"namespace": "knowledge_base"
}
}
]
}
Knowledge Base Enhancement
Add Structured Data
{
"structured_knowledge": {
"product_info": {
"pricing_plans": {
"basic": {"price": 29, "features": ["Feature A", "Feature B"]},
"pro": {"price": 99, "features": ["All Basic", "Feature C", "Feature D"]},
"enterprise": {"price": 299, "features": ["All Pro", "Priority Support"]}
},
"integrations": ["Slack", "Teams", "Zendesk", "Salesforce"],
"supported_languages": ["English", "Spanish", "French", "German"]
},
"policies": {
"refund_period": "30 days",
"support_hours": "24/7 for Enterprise, 9-5 EST for others",
"response_time": {
"enterprise": "1 hour",
"pro": "4 hours",
"basic": "24 hours"
}
}
}
}
Step 2: Build Intent Classification
Intent Detection Component
Create Intent Classifier
intent_classifier_config = {
"component": "IntentClassifier",
"config": {
"model": "gpt-3.5-turbo",
"temperature": 0.1,
"system_prompt": """
You are an intent classifier for customer support. Classify the customer's message into one of these categories:
CATEGORIES:
- billing: Questions about payments, invoices, pricing, refunds
- technical: Technical issues, bugs, troubleshooting, how-to questions
- account: Account management, password reset, profile changes
- general: General inquiries, product information, features
- complaint: Complaints, negative feedback, service issues
- escalation: Requests to speak with human agent, complex issues
Respond with only the category name.
""",
"max_tokens": 50
}
}
Confidence Scoring
confidence_scorer_config = {
"component": "ConfidenceScorer",
"config": {
"model": "gpt-3.5-turbo",
"temperature": 0.0,
"system_prompt": """
Rate your confidence in handling this customer support request on a scale of 1-10:
1-3: Low confidence - Complex issue requiring human intervention
4-6: Medium confidence - Can provide basic help but may need escalation
7-10: High confidence - Can fully resolve the issue
Consider factors:
- Clarity of the request
- Availability of relevant information
- Complexity of the issue
- Emotional tone (frustrated customers may need human touch)
Respond with only a number from 1-10.
""",
"max_tokens": 10
}
}
Step 3: Create Specialized Support Agents
General Support Agent
Main Support Agent Configuration
general_support_agent = {
"component": "SupportAgent",
"config": {
"model": "gpt-4",
"temperature": 0.3,
"system_prompt": """
You are a helpful and empathetic customer support agent. Your goal is to:
1. Understand the customer's issue clearly
2. Provide accurate, helpful information
3. Be friendly and professional
4. Escalate when necessary
PERSONALITY:
- Patient and understanding
- Clear and concise communication
- Proactive in offering solutions
- Empathetic to customer frustrations
GUIDELINES:
- Always acknowledge the customer's concern
- Use the knowledge base to provide accurate information
- If you're unsure, say so and offer to escalate
- End with asking if there's anything else you can help with
ESCALATION TRIGGERS:
- Billing disputes over $100
- Technical issues requiring account access
- Angry or very frustrated customers
- Requests outside your knowledge base
""",
"max_tokens": 1000,
"tools": [
"knowledge_base_search",
"policy_lookup",
"escalation_trigger"
]
}
}
Technical Support Agent
Technical Specialist Configuration
technical_support_agent = {
"component": "TechnicalAgent",
"config": {
"model": "gpt-4",
"temperature": 0.2,
"system_prompt": """
You are a technical support specialist. You excel at:
1. Diagnosing technical problems
2. Providing step-by-step solutions
3. Explaining complex concepts simply
4. Troubleshooting systematically
APPROACH:
- Ask clarifying questions to understand the issue
- Provide specific, actionable steps
- Explain what each step does
- Offer alternative solutions
- Follow up to ensure resolution
TECHNICAL AREAS:
- API integration issues
- Authentication problems
- Performance optimization
- Configuration errors
- Browser compatibility
- Mobile app issues
Always provide code examples when relevant and explain technical concepts in simple terms.
""",
"max_tokens": 1500,
"tools": [
"knowledge_base_search",
"code_generator",
"diagnostic_tools"
]
}
}
Billing Support Agent
Billing Specialist Configuration
billing_support_agent = {
"component": "BillingAgent",
"config": {
"model": "gpt-3.5-turbo",
"temperature": 0.1,
"system_prompt": """
You are a billing support specialist. You handle:
1. Billing questions and disputes
2. Payment issues
3. Plan changes and upgrades
4. Refund requests
5. Invoice explanations
SECURITY GUIDELINES:
- Never provide specific account details
- Always verify customer identity before discussing billing
- For disputes over $100, escalate to human agent
- Follow company refund policy strictly
AVAILABLE ACTIONS:
- Explain billing cycles and charges
- Provide general pricing information
- Initiate billing disputes (with approval)
- Schedule payment plan consultations
- Process basic refund requests (under policy limits)
Be empathetic about billing concerns while following company policies.
""",
"max_tokens": 800,
"tools": [
"billing_policy_lookup",
"payment_verification",
"refund_processor"
]
}
}
Step 4: Implement Knowledge Base Search
Vector Search Configuration
Search Component Setup
knowledge_base_search = {
"component": "VectorSearch",
"config": {
"vector_store": "pinecone",
"index_name": "customer-support-kb",
"top_k": 5,
"similarity_threshold": 0.75,
"metadata_filters": {
"status": "active",
"language": "en"
},
"rerank": True,
"rerank_model": "cross-encoder"
}
}
Hybrid Search Implementation
hybrid_search_config = {
"component": "HybridSearch",
"config": {
"vector_weight": 0.7,
"keyword_weight": 0.3,
"vector_search": {
"model": "text-embedding-ada-002",
"top_k": 10
},
"keyword_search": {
"algorithm": "bm25",
"top_k": 10
},
"fusion_method": "reciprocal_rank_fusion"
}
}
Context Enhancement
Context Aggregation
context_enhancer = {
"component": "ContextEnhancer",
"config": {
"max_context_length": 3000,
"prioritization": "relevance_score",
"include_metadata": True,
"context_template": """
RELEVANT KNOWLEDGE:
{context_chunks}
CUSTOMER INFORMATION:
- Support Plan: {customer_plan}
- Account Status: {account_status}
- Previous Interactions: {interaction_count}
COMPANY POLICIES:
{relevant_policies}
"""
}
}
Step 5: Build Escalation Logic
Escalation Decision Engine
Escalation Rules
escalation_rules = {
"component": "EscalationDecision",
"config": {
"model": "gpt-3.5-turbo",
"temperature": 0.0,
"system_prompt": """
Determine if this customer support case should be escalated to a human agent.
ESCALATION CRITERIA:
1. Customer explicitly requests human agent
2. Issue involves billing disputes over $100
3. Technical issues requiring account-level access
4. Complaint with legal implications
5. Confidence score below 4
6. Customer expresses high frustration/anger
7. Issue is outside knowledge base scope
8. Security or privacy concerns
ESCALATION LEVELS:
- IMMEDIATE: Security, legal, or very angry customers
- HIGH: Billing disputes, technical issues, confident score < 3
- NORMAL: General requests for human agent, confidence score 3-4
- NO_ESCALATION: Can be handled by AI
Respond with: IMMEDIATE, HIGH, NORMAL, or NO_ESCALATION
""",
"max_tokens": 50
}
}
Escalation Workflow
def create_escalation_workflow():
return {
"trigger_conditions": [
"escalation_decision != 'NO_ESCALATION'",
"customer_satisfaction_score < 3",
"interaction_count > 5"
],
"escalation_actions": {
"IMMEDIATE": {
"priority": "urgent",
"notify_manager": True,
"max_response_time": "15_minutes"
},
"HIGH": {
"priority": "high",
"assign_to": "senior_agent",
"max_response_time": "1_hour"
},
"NORMAL": {
"priority": "normal",
"assign_to": "next_available",
"max_response_time": "4_hours"
}
}
}
Step 6: Add Multi-Language Support
Language Detection
Language Detection Component
language_detector = {
"component": "LanguageDetector",
"config": {
"detection_model": "langdetect",
"supported_languages": [
"en", "es", "fr", "de", "it", "pt", "zh", "ja"
],
"confidence_threshold": 0.8,
"fallback_language": "en"
}
}
Translation Service
translation_service = {
"component": "TranslationService",
"config": {
"provider": "google_translate",
"api_key": "${GOOGLE_TRANSLATE_API_KEY}",
"preserve_formatting": True,
"cache_translations": True,
"quality_check": True
}
}
Multilingual Responses
Language-Specific Agents
multilingual_agent_config = {
"component": "MultilingualAgent",
"config": {
"base_model": "gpt-4",
"temperature": 0.3,
"language_prompts": {
"es": "Responde en español de manera profesional y empática...",
"fr": "Répondez en français de manière professionnelle et empathique...",
"de": "Antworten Sie auf Deutsch professionell und einfühlsam...",
"zh": "请用中文专业且富有同理心地回应..."
},
"cultural_considerations": {
"es": "Use formal 'usted' unless customer uses informal tone",
"fr": "Use formal 'vous' in professional context",
"de": "Maintain formal 'Sie' throughout interaction",
"zh": "Use respectful and polite language patterns"
}
}
}
Step 7: Integration with Support Systems
Ticketing System Integration
Zendesk Integration
zendesk_integration = {
"component": "ZendeskConnector",
"config": {
"subdomain": "yourcompany",
"email": "support@yourcompany.com",
"api_token": "${ZENDESK_API_TOKEN}",
"default_assignee": "ai-support@yourcompany.com",
"custom_fields": {
"ai_handled": True,
"confidence_score": "{{confidence_score}}",
"escalation_reason": "{{escalation_reason}}"
}
}
}
Ticket Creation Workflow
def create_support_ticket(customer_data, issue_data, escalation_level):
ticket_data = {
"subject": f"[{escalation_level}] {issue_data['category']}: {issue_data['summary']}",
"description": f"""
Customer Inquiry: {issue_data['original_message']}
AI Analysis:
- Category: {issue_data['category']}
- Confidence Score: {issue_data['confidence_score']}
- Escalation Reason: {issue_data['escalation_reason']}
Customer Information:
- Email: {customer_data['email']}
- Support Plan: {customer_data['plan']}
- Previous Interactions: {customer_data['interaction_count']}
Conversation History:
{issue_data['conversation_history']}
""",
"requester": {
"name": customer_data['name'],
"email": customer_data['email']
},
"priority": escalation_level.lower(),
"tags": [
"ai-escalated",
issue_data['category'],
f"confidence-{issue_data['confidence_score']}"
]
}
return zendesk_client.tickets.create(ticket_data)
CRM Integration
Salesforce Integration
salesforce_integration = {
"component": "SalesforceConnector",
"config": {
"username": "${SALESFORCE_USERNAME}",
"password": "${SALESFORCE_PASSWORD}",
"security_token": "${SALESFORCE_SECURITY_TOKEN}",
"domain": "login", # or "test" for sandbox
"api_version": "58.0"
}
}
Customer Data Enrichment
def enrich_customer_data(email):
"""Fetch customer data from CRM"""
customer_query = f"""
SELECT Id, Name, Email, Account.Name, Account.Type,
Support_Plan__c, Total_Interactions__c,
Last_Interaction_Date__c, Customer_Health_Score__c
FROM Contact
WHERE Email = '{email}'
"""
result = salesforce_client.query(customer_query)
if result['totalSize'] > 0:
contact = result['records'][0]
return {
"customer_id": contact['Id'],
"name": contact['Name'],
"email": contact['Email'],
"company": contact['Account']['Name'],
"account_type": contact['Account']['Type'],
"support_plan": contact['Support_Plan__c'],
"interaction_count": contact['Total_Interactions__c'],
"last_interaction": contact['Last_Interaction_Date__c'],
"health_score": contact['Customer_Health_Score__c']
}
return None
Step 8: Implement Quality Monitoring
Conversation Analysis
Quality Assessment Component
quality_monitor = {
"component": "QualityMonitor",
"config": {
"model": "gpt-4",
"temperature": 0.1,
"assessment_criteria": {
"accuracy": "Was the information provided accurate?",
"helpfulness": "Was the response helpful in resolving the issue?",
"empathy": "Did the agent show empathy and understanding?",
"professionalism": "Was the response professional and appropriate?",
"completeness": "Was the issue fully addressed?"
},
"scoring_scale": "1-10",
"minimum_acceptable_score": 7
}
}
Sentiment Analysis
sentiment_analyzer = {
"component": "SentimentAnalyzer",
"config": {
"model": "distilbert-base-uncased-finetuned-sst-2-english",
"track_conversation_flow": True,
"detect_emotion_changes": True,
"alert_on_negative_trend": True,
"sentiment_categories": [
"very_negative", "negative", "neutral", "positive", "very_positive"
]
}
}
Feedback Collection
Customer Satisfaction Survey
satisfaction_survey = {
"component": "SatisfactionSurvey",
"config": {
"trigger_conditions": [
"conversation_ended",
"issue_resolved",
"escalation_completed"
],
"survey_questions": [
{
"question": "How satisfied are you with the support you received?",
"type": "rating",
"scale": "1-5"
},
{
"question": "Was your issue resolved?",
"type": "boolean"
},
{
"question": "Any additional feedback?",
"type": "text",
"optional": True
}
],
"response_timeout": "24_hours"
}
}
Step 9: Advanced Features
Predictive Support
Issue Prediction Model
predictive_support = {
"component": "IssuePrediction",
"config": {
"model": "custom_ml_model",
"prediction_factors": [
"customer_usage_patterns",
"recent_feature_changes",
"historical_support_data",
"customer_health_score"
],
"prediction_horizon": "7_days",
"confidence_threshold": 0.8,
"proactive_outreach": True
}
}
Proactive Support Workflow
def proactive_support_workflow():
"""Identify customers likely to need support and reach out proactively"""
# Identify at-risk customers
at_risk_customers = predictive_model.predict_support_needs()
for customer in at_risk_customers:
if customer['risk_score'] > 0.8:
# Send proactive support message
proactive_message = f"""
Hi {customer['name']},
We noticed you might be experiencing issues with {customer['predicted_issue_area']}.
Our support team is here to help!
Common solutions for {customer['predicted_issue_area']}:
{get_common_solutions(customer['predicted_issue_area'])}
If you need further assistance, just reply to this message or visit our support portal.
Best regards,
The Support Team
"""
send_proactive_support(customer['email'], proactive_message)
Self-Service Enhancement
Dynamic FAQ Generation
dynamic_faq = {
"component": "DynamicFAQ",
"config": {
"update_frequency": "daily",
"trending_threshold": 5, # 5+ similar questions in 24h
"auto_generate_answers": True,
"human_review_required": True,
"categories": [
"billing", "technical", "account", "features"
]
}
}
Smart Search Enhancement
smart_search = {
"component": "SmartSearch",
"config": {
"search_suggestions": True,
"auto_complete": True,
"typo_correction": True,
"semantic_search": True,
"personalized_results": True,
"search_analytics": True
}
}
Step 10: Performance Monitoring
Key Metrics Dashboard
Support Metrics
Support KPIs:
Efficiency:
- First Contact Resolution Rate: >80%
- Average Resolution Time: <4 hours
- Escalation Rate: <15%
- Self-Service Usage: >60%
Quality:
- Customer Satisfaction Score: >4.5/5
- Quality Score: >85%
- Accuracy Rate: >95%
- Sentiment Improvement: Positive trend
Volume:
- Total Inquiries: Track daily/weekly trends
- Channel Distribution: Email, chat, phone
- Peak Hours: Identify staffing needs
- Seasonal Patterns: Plan for fluctuations
Real-Time Monitoring
class SupportMetricsMonitor:
def __init__(self):
self.metrics = {
"active_conversations": 0,
"average_wait_time": 0,
"resolution_rate": 0,
"satisfaction_score": 0,
"escalation_rate": 0
}
def update_metrics(self):
"""Update real-time support metrics"""
# Get current metrics from database
current_metrics = self.fetch_current_metrics()
# Calculate derived metrics
self.metrics.update({
"first_contact_resolution": self.calculate_fcr(),
"agent_utilization": self.calculate_agent_utilization(),
"queue_health": self.assess_queue_health(),
"trend_analysis": self.analyze_trends()
})
# Send alerts if thresholds exceeded
self.check_alert_conditions()
return self.metrics
def check_alert_conditions(self):
"""Check for alert conditions"""
if self.metrics["average_wait_time"] > 300: # 5 minutes
self.send_alert("High wait times detected")
if self.metrics["escalation_rate"] > 0.20: # 20%
self.send_alert("High escalation rate")
if self.metrics["satisfaction_score"] < 4.0:
self.send_alert("Low satisfaction scores")
Testing and Optimization
A/B Testing Framework
Response Variation Testing
ab_testing_config = {
"component": "ABTesting",
"config": {
"test_groups": {
"control": {
"percentage": 50,
"agent_config": "standard_support_agent"
},
"variant_a": {
"percentage": 25,
"agent_config": "empathy_enhanced_agent"
},
"variant_b": {
"percentage": 25,
"agent_config": "efficiency_optimized_agent"
}
},
"success_metrics": [
"customer_satisfaction",
"resolution_time",
"escalation_rate"
],
"test_duration": "14_days",
"statistical_significance": 0.95
}
}
Continuous Improvement
Learning Loop Implementation
def continuous_improvement_loop():
"""Implement continuous learning and improvement"""
# Analyze recent interactions
recent_data = analyze_recent_interactions()
# Identify improvement opportunities
improvements = identify_improvements(recent_data)
# Update knowledge base
if improvements['knowledge_gaps']:
update_knowledge_base(improvements['knowledge_gaps'])
# Retrain models if needed
if improvements['model_performance'] < 0.85:
retrain_classification_models()
# Update agent prompts
if improvements['response_quality'] < 0.90:
optimize_agent_prompts(improvements['response_feedback'])
# Generate improvement report
return generate_improvement_report(improvements)
Deployment and Integration
Production Deployment
Gradual Rollout Strategy
Rollout Plan:
Phase 1 (Week 1):
- Traffic: 10%
- Features: Basic FAQ and simple inquiries
- Monitoring: Enhanced logging and metrics
Phase 2 (Week 2-3):
- Traffic: 30%
- Features: Add technical support and billing
- Monitoring: A/B testing implementation
Phase 3 (Week 4-5):
- Traffic: 60%
- Features: Full feature set except complex cases
- Monitoring: Quality assurance and optimization
Phase 4 (Week 6+):
- Traffic: 80%+
- Features: Complete system with human backup
- Monitoring: Continuous improvement and learning
Integration Checklist
Best Practices
Customer Experience
Always acknowledge customer emotions
Provide clear, actionable solutions
Set proper expectations for response times
Follow up on escalated issues
Continuously gather and act on feedback
Technical Excellence
Maintain high accuracy in responses
Optimize for speed without sacrificing quality
Regular model updates and retraining
Robust error handling and fallbacks
Comprehensive testing of all scenarios
Business Impact
Monitor cost savings from automation
Track customer satisfaction improvements
Measure agent productivity gains
Analyze resolution time improvements
Calculate ROI on AI implementation
Next Steps
After implementing your customer support agent:
Monitor Performance: Track key metrics and KPIs
Gather Feedback: Collect input from customers and agents
Iterate and Improve: Continuously enhance the system
Scale Gradually: Expand to handle more complex scenarios
Train Staff: Ensure smooth AI-human collaboration
Related Examples
Document Q&A: Enhance knowledge base search
Sales Assistant: Cross-functional AI agents
Content Generation: Automated response creation
You've built a comprehensive AI-powered customer support system! This foundation can handle the majority of customer inquiries while seamlessly escalating complex issues to human agents when needed.
Last updated