Azure Integration
Integrate BroxiAI with Microsoft Azure cloud services and ecosystem
Learn how to integrate BroxiAI workflows with Microsoft Azure services for enterprise-grade AI applications with enhanced security, compliance, and scalability.
Overview
BroxiAI integrates seamlessly with Azure services to provide:
Enterprise-grade security and compliance
Global scale and high availability
Advanced AI and cognitive services
Hybrid and multi-cloud capabilities
Cost-effective resource management
Core Azure Services Integration
Azure OpenAI Service
Connect BroxiAI to Azure's managed OpenAI service for enhanced security and compliance.
Configuration
{
"provider": "azure_openai",
"endpoint": "https://your-resource.openai.azure.com/",
"api_key": "${AZURE_OPENAI_API_KEY}",
"api_version": "2023-12-01-preview",
"deployment_name": "gpt-4",
"models": {
"chat": "gpt-4",
"embeddings": "text-embedding-ada-002",
"completion": "gpt-35-turbo"
}
}
Supported Models
GPT-4 (8K, 32K)
GPT-3.5 Turbo (4K, 16K)
Text Embedding Ada 002
DALL-E 3 (Image generation)
Whisper (Speech-to-text)
Enterprise Features
Virtual network integration
Private endpoints
Customer-managed keys
Content filtering
Abuse monitoring
Azure Blob Storage
Store and process documents, images, and other files securely.
Use Cases
Document storage for RAG applications
File upload/download workflows
Batch processing of documents
Data archival and compliance
Content delivery networks
Integration Example
# BroxiAI workflow component
{
"component": "AzureBlobLoader",
"config": {
"account_name": "mystorageaccount",
"container_name": "documents",
"blob_name": "contracts/agreement.pdf",
"connection_string": "${AZURE_STORAGE_CONNECTION_STRING}",
"sas_token": "${AZURE_STORAGE_SAS_TOKEN}"
}
}
Security Configuration
Azure Blob Security:
Authentication:
- Azure Active Directory
- Shared Access Signatures (SAS)
- Account keys (not recommended for production)
Network Security:
- Private endpoints
- Network ACLs
- Firewall rules
- Virtual network integration
Encryption:
- Encryption at rest (AES-256)
- Customer-managed keys
- Encryption in transit (HTTPS)
- Client-side encryption
Azure SQL Database
Connect to managed SQL databases for data retrieval and storage.
Configuration
{
"database_type": "azure_sql",
"server": "myserver.database.windows.net",
"database": "production_db",
"authentication": "azure_ad",
"connection_options": {
"encrypt": true,
"trust_server_certificate": false,
"connection_timeout": 30,
"command_timeout": 600
}
}
Authentication Methods
Azure Active Directory integration
SQL Server authentication
Managed identity
Service principal
SQL Agent Integration
Natural language to SQL conversion
Schema analysis and optimization
Query performance monitoring
Security and compliance checks
Azure Cosmos DB
Integrate with globally distributed NoSQL database.
Use Cases
Session management and storage
Real-time analytics
Document storage and retrieval
User preference management
Conversation history
Configuration
{
"cosmosdb_config": {
"endpoint": "https://myaccount.documents.azure.com:443/",
"primary_key": "${COSMOS_DB_PRIMARY_KEY}",
"database_name": "broxi_sessions",
"container_name": "conversations",
"partition_key": "/user_id"
}
}
Vector Search Capabilities
# Vector search in Cosmos DB
vector_search_config = {
"embedding_dimension": 1536,
"similarity_metric": "cosine",
"index_type": "quantizedFlat",
"vector_indexes": [
{
"path": "/embedding_vector",
"type": "quantizedFlat"
}
]
}
Azure Functions
Trigger BroxiAI workflows from serverless functions.
Function App Configuration
import azure.functions as func
import requests
import json
import os
def main(req: func.HttpRequest) -> func.HttpResponse:
"""Azure Function to trigger BroxiAI workflow"""
try:
# Get request data
req_body = req.get_json()
user_message = req_body.get('message')
user_id = req_body.get('user_id')
# Call BroxiAI workflow
broxi_response = requests.post(
"https://api.broxi.ai/v1/flows/customer-support/run",
headers={
"Authorization": f"Bearer {os.environ['BROXI_API_TOKEN']}",
"Content-Type": "application/json"
},
json={
"input": user_message,
"variables": {
"user_id": user_id,
"source": "azure_function"
}
}
)
broxi_response.raise_for_status()
result = broxi_response.json()
return func.HttpResponse(
json.dumps({
"response": result["output"],
"execution_time": result["execution_time"],
"status": "success"
}),
status_code=200,
mimetype="application/json"
)
except Exception as e:
return func.HttpResponse(
json.dumps({"error": str(e)}),
status_code=500,
mimetype="application/json"
)
Timer-Triggered Function
import azure.functions as func
import datetime
import requests
import os
def main(mytimer: func.TimerRequest) -> None:
"""Scheduled workflow execution"""
utc_timestamp = datetime.datetime.utcnow().replace(
tzinfo=datetime.timezone.utc
).isoformat()
# Trigger daily report generation
response = requests.post(
"https://api.broxi.ai/v1/flows/daily-report/run",
headers={
"Authorization": f"Bearer {os.environ['BROXI_API_TOKEN']}",
"Content-Type": "application/json"
},
json={
"input": "Generate daily analytics report",
"variables": {
"date": utc_timestamp,
"report_type": "daily_summary"
}
}
)
if response.status_code == 200:
print(f"Daily report triggered at {utc_timestamp}")
else:
print(f"Failed to trigger report: {response.text}")
Azure Service Bus
Message queuing and event-driven architecture.
Service Bus Configuration
{
"service_bus": {
"connection_string": "${AZURE_SERVICE_BUS_CONNECTION_STRING}",
"queue_name": "broxi-workflow-queue",
"topic_name": "broxi-events",
"subscription_name": "workflow-processor"
}
}
Message Processing
from azure.servicebus import ServiceBusClient, ServiceBusMessage
import json
class BroxiServiceBusHandler:
def __init__(self, connection_string):
self.client = ServiceBusClient.from_connection_string(connection_string)
def send_workflow_request(self, workflow_id, input_data, user_id):
"""Send workflow request to Service Bus queue"""
message_body = {
"workflow_id": workflow_id,
"input": input_data,
"user_id": user_id,
"timestamp": datetime.utcnow().isoformat(),
"source": "service_bus"
}
message = ServiceBusMessage(json.dumps(message_body))
with self.client.get_queue_sender("broxi-workflow-queue") as sender:
sender.send_messages(message)
def process_workflow_queue(self):
"""Process messages from workflow queue"""
with self.client.get_queue_receiver("broxi-workflow-queue") as receiver:
for message in receiver:
try:
# Parse message
data = json.loads(str(message))
# Execute BroxiAI workflow
result = self.execute_broxi_workflow(
data["workflow_id"],
data["input"],
data["user_id"]
)
# Complete message
receiver.complete_message(message)
# Send result notification
self.send_result_notification(data["user_id"], result)
except Exception as e:
print(f"Error processing message: {e}")
receiver.abandon_message(message)
Advanced Azure Integrations
Azure Cognitive Services
Enhance BroxiAI workflows with additional AI capabilities.
Speech Services
{
"speech_config": {
"subscription_key": "${AZURE_SPEECH_KEY}",
"service_region": "eastus",
"speech_recognition_language": "en-US",
"voice_name": "en-US-AriaNeural"
}
}
Text Analytics
# Sentiment analysis and key phrase extraction
{
"component": "AzureTextAnalytics",
"config": {
"endpoint": "https://myaccount.cognitiveservices.azure.com/",
"subscription_key": "${AZURE_TEXT_ANALYTICS_KEY}",
"features": [
"sentiment_analysis",
"key_phrase_extraction",
"entity_recognition",
"language_detection"
]
}
}
Computer Vision
{
"computer_vision": {
"endpoint": "https://myaccount.cognitiveservices.azure.com/",
"subscription_key": "${AZURE_COMPUTER_VISION_KEY}",
"features": [
"ocr",
"image_analysis",
"face_detection",
"object_detection"
]
}
}
Azure Logic Apps
Workflow orchestration and integration.
Logic App Integration
{
"logic_app_trigger": {
"type": "HTTP",
"inputs": {
"method": "POST",
"uri": "https://api.broxi.ai/v1/flows/approval-workflow/run",
"headers": {
"Authorization": "Bearer @{parameters('broxi_api_token')}",
"Content-Type": "application/json"
},
"body": {
"input": "@{triggerBody()['request_text']}",
"variables": {
"requester_id": "@{triggerBody()['user_id']}",
"approval_level": "@{triggerBody()['level']}"
}
}
}
}
}
Conditional Workflow
{
"condition": {
"type": "If",
"expression": {
"and": [
{
"greater": [
"@int(outputs('BroxiAI_Workflow')['body']['confidence_score'])",
80
]
}
]
},
"actions": {
"auto_approve": {
"type": "Http",
"inputs": {
"method": "POST",
"uri": "https://approval-system.com/auto-approve",
"body": "@outputs('BroxiAI_Workflow')['body']"
}
}
},
"else": {
"actions": {
"manual_review": {
"type": "Http",
"inputs": {
"method": "POST",
"uri": "https://approval-system.com/manual-review",
"body": "@outputs('BroxiAI_Workflow')['body']"
}
}
}
}
}
}
Azure Monitor and Application Insights
Comprehensive monitoring and observability.
Application Insights Configuration
{
"application_insights": {
"instrumentation_key": "${AZURE_APP_INSIGHTS_KEY}",
"connection_string": "${AZURE_APP_INSIGHTS_CONNECTION_STRING}",
"enable_live_metrics": true,
"enable_adaptive_sampling": true,
"sampling_percentage": 100
}
}
Custom Telemetry
from applicationinsights import TelemetryClient
import time
class BroxiAzureMonitoring:
def __init__(self, instrumentation_key):
self.telemetry_client = TelemetryClient(instrumentation_key)
def track_workflow_execution(self, workflow_id, execution_time, success, user_id):
"""Track workflow execution metrics"""
# Track custom event
self.telemetry_client.track_event(
'WorkflowExecution',
{
'workflow_id': workflow_id,
'user_id': user_id,
'success': str(success)
},
{
'execution_time': execution_time,
'timestamp': time.time()
}
)
# Track performance metric
self.telemetry_client.track_metric(
'WorkflowExecutionTime',
execution_time,
properties={'workflow_id': workflow_id}
)
# Track dependency
self.telemetry_client.track_dependency(
'BroxiAI',
'ExecuteWorkflow',
f'/workflows/{workflow_id}/run',
start_time=time.time() - execution_time,
duration=int(execution_time * 1000), # milliseconds
success=success
)
self.telemetry_client.flush()
def track_workflow_error(self, workflow_id, error_message, user_id):
"""Track workflow errors"""
self.telemetry_client.track_exception(
Exception(error_message),
properties={
'workflow_id': workflow_id,
'user_id': user_id,
'error_type': 'WorkflowExecution'
}
)
self.telemetry_client.flush()
Azure Monitor Alerts
Alert Rules:
Workflow_Error_Rate:
condition: "error_rate > 5%"
time_window: "5 minutes"
action_group: "broxi_alerts"
severity: "Warning"
High_Response_Time:
condition: "avg_response_time > 10 seconds"
time_window: "5 minutes"
action_group: "performance_alerts"
severity: "Error"
API_Quota_Warning:
condition: "api_calls > 80% of quota"
time_window: "1 hour"
action_group: "billing_alerts"
severity: "Information"
Security and Compliance
Azure Active Directory Integration
Single Sign-On (SSO)
{
"azure_ad_config": {
"tenant_id": "${AZURE_TENANT_ID}",
"client_id": "${AZURE_CLIENT_ID}",
"client_secret": "${AZURE_CLIENT_SECRET}",
"redirect_uri": "https://yourapp.com/auth/callback",
"scopes": ["openid", "profile", "email", "User.Read"]
}
}
Authentication Flow
from msal import ConfidentialClientApplication
import requests
class AzureADBroxiAuth:
def __init__(self, tenant_id, client_id, client_secret):
self.app = ConfidentialClientApplication(
client_id,
authority=f"https://login.microsoftonline.com/{tenant_id}",
client_credential=client_secret
)
def get_token_for_user(self, username, password):
"""Get token using username/password (not recommended for production)"""
result = self.app.acquire_token_by_username_password(
username=username,
password=password,
scopes=["https://graph.microsoft.com/.default"]
)
if "access_token" in result:
return result["access_token"]
else:
raise Exception(f"Authentication failed: {result.get('error_description')}")
def get_token_for_app(self):
"""Get token for application (daemon scenario)"""
result = self.app.acquire_token_for_client(
scopes=["https://graph.microsoft.com/.default"]
)
if "access_token" in result:
return result["access_token"]
else:
raise Exception(f"Authentication failed: {result.get('error_description')}")
def call_broxi_with_azure_token(self, azure_token, workflow_id, input_data):
"""Call BroxiAI with Azure AD token"""
# Exchange Azure AD token for BroxiAI token (implementation depends on your setup)
broxi_token = self.exchange_token(azure_token)
response = requests.post(
f"https://api.broxi.ai/v1/flows/{workflow_id}/run",
headers={
"Authorization": f"Bearer {broxi_token}",
"Content-Type": "application/json"
},
json={"input": input_data}
)
return response.json()
Azure Key Vault
Secure secret management for API keys and credentials.
Key Vault Configuration
from azure.keyvault.secrets import SecretClient
from azure.identity import DefaultAzureCredential
class AzureKeyVaultManager:
def __init__(self, vault_url):
credential = DefaultAzureCredential()
self.client = SecretClient(vault_url=vault_url, credential=credential)
def get_broxi_api_key(self):
"""Retrieve BroxiAI API key from Key Vault"""
secret = self.client.get_secret("broxi-api-key")
return secret.value
def get_openai_api_key(self):
"""Retrieve OpenAI API key from Key Vault"""
secret = self.client.get_secret("openai-api-key")
return secret.value
def rotate_api_key(self, secret_name, new_key):
"""Rotate API key in Key Vault"""
self.client.set_secret(secret_name, new_key)
return True
# Usage in BroxiAI configuration
kv_manager = AzureKeyVaultManager("https://myvault.vault.azure.net/")
broxi_client = BroxiClient(
api_token=kv_manager.get_broxi_api_key()
)
Managed Identity Integration
Azure Resource Configuration:
App Service:
identity:
type: "SystemAssigned"
app_settings:
AZURE_CLIENT_ID: "system_assigned"
KEY_VAULT_URL: "https://myvault.vault.azure.net/"
Key Vault Access Policy:
object_id: "app_service_principal_id"
permissions:
secrets: ["get", "list"]
keys: ["get", "list"]
certificates: ["get", "list"]
Compliance and Governance
Azure Policy Integration
{
"azure_policy": {
"required_tags": {
"Environment": "Production",
"Application": "BroxiAI",
"Owner": "AI-Team",
"CostCenter": "Engineering"
},
"allowed_regions": [
"East US 2",
"West Europe",
"Southeast Asia"
],
"encryption_required": true,
"backup_required": true
}
}
Compliance Monitoring
from azure.mgmt.policyinsights import PolicyInsightsClient
from azure.identity import DefaultAzureCredential
class ComplianceMonitor:
def __init__(self, subscription_id):
credential = DefaultAzureCredential()
self.client = PolicyInsightsClient(credential, subscription_id)
def check_broxi_compliance(self):
"""Check compliance status for BroxiAI resources"""
# Get policy states
policy_states = self.client.policy_states.list_query_results_for_subscription(
"latest",
subscription_id=self.subscription_id,
filter="resourceType eq 'Microsoft.Web/sites' and contains(resourceId, 'broxi')"
)
compliance_status = {
"compliant": 0,
"non_compliant": 0,
"violations": []
}
for state in policy_states.value:
if state.compliance_state == "Compliant":
compliance_status["compliant"] += 1
else:
compliance_status["non_compliant"] += 1
compliance_status["violations"].append({
"resource": state.resource_id,
"policy": state.policy_definition_name,
"reason": state.compliance_reason_code
})
return compliance_status
Deployment Patterns
Azure Resource Manager (ARM) Templates
Complete BroxiAI Infrastructure
{
"$schema": "https://schema.management.azure.com/schemas/2019-04-01/deploymentTemplate.json#",
"contentVersion": "1.0.0.0",
"parameters": {
"environmentName": {
"type": "string",
"defaultValue": "production"
},
"broxiApiToken": {
"type": "securestring"
}
},
"variables": {
"resourcePrefix": "[concat('broxi-', parameters('environmentName'))]"
},
"resources": [
{
"type": "Microsoft.Web/serverfarms",
"apiVersion": "2021-02-01",
"name": "[concat(variables('resourcePrefix'), '-plan')]",
"location": "[resourceGroup().location]",
"sku": {
"name": "P1v3",
"tier": "PremiumV3"
},
"properties": {
"reserved": true
}
},
{
"type": "Microsoft.Web/sites",
"apiVersion": "2021-02-01",
"name": "[concat(variables('resourcePrefix'), '-app')]",
"location": "[resourceGroup().location]",
"dependsOn": [
"[resourceId('Microsoft.Web/serverfarms', concat(variables('resourcePrefix'), '-plan'))]"
],
"properties": {
"serverFarmId": "[resourceId('Microsoft.Web/serverfarms', concat(variables('resourcePrefix'), '-plan'))]",
"siteConfig": {
"linuxFxVersion": "PYTHON|3.9",
"appSettings": [
{
"name": "BROXI_API_TOKEN",
"value": "[parameters('broxiApiToken')]"
},
{
"name": "AZURE_ENVIRONMENT",
"value": "[parameters('environmentName')]"
}
]
}
}
},
{
"type": "Microsoft.Storage/storageAccounts",
"apiVersion": "2021-09-01",
"name": "[concat(variables('resourcePrefix'), 'storage')]",
"location": "[resourceGroup().location]",
"sku": {
"name": "Standard_LRS"
},
"kind": "StorageV2",
"properties": {
"encryption": {
"services": {
"blob": {
"enabled": true
}
},
"keySource": "Microsoft.Storage"
}
}
}
]
}
Azure DevOps Integration
Pipeline Configuration (azure-pipelines.yml)
trigger:
branches:
include:
- main
- develop
variables:
azureServiceConnection: 'azure-subscription'
resourceGroupName: 'broxi-production-rg'
stages:
- stage: Build
jobs:
- job: BuildApplication
pool:
vmImage: 'ubuntu-latest'
steps:
- task: UsePythonVersion@0
inputs:
versionSpec: '3.9'
- script: |
pip install -r requirements.txt
pip install broxi-ai
displayName: 'Install dependencies'
- script: |
python -m pytest tests/ --junitxml=test-results.xml
displayName: 'Run tests'
- task: PublishTestResults@2
inputs:
testResultsFiles: 'test-results.xml'
testRunTitle: 'Python Tests'
- stage: Deploy
dependsOn: Build
condition: and(succeeded(), eq(variables['Build.SourceBranch'], 'refs/heads/main'))
jobs:
- deployment: DeployToAzure
environment: 'production'
pool:
vmImage: 'ubuntu-latest'
strategy:
runOnce:
deploy:
steps:
- task: AzureResourceManagerTemplateDeployment@3
inputs:
deploymentScope: 'Resource Group'
azureResourceManagerConnection: '$(azureServiceConnection)'
resourceGroupName: '$(resourceGroupName)'
location: 'East US 2'
templateLocation: 'Linked artifact'
csmFile: 'infrastructure/arm-template.json'
overrideParameters: |
-environmentName "production"
-broxiApiToken "$(BROXI_API_TOKEN)"
- task: AzureWebApp@1
inputs:
azureSubscription: '$(azureServiceConnection)'
appType: 'webAppLinux'
appName: 'broxi-production-app'
package: '$(Pipeline.Workspace)/drop'
Cost Optimization
Resource Management
Cost Optimization Strategies
Azure Cost Optimization:
Compute:
- Use Azure Functions for sporadic workloads
- Implement auto-scaling for App Services
- Use spot instances for batch processing
- Right-size VM instances
Storage:
- Use appropriate storage tiers (Hot/Cool/Archive)
- Implement lifecycle management policies
- Enable data deduplication
- Use managed disks efficiently
Networking:
- Optimize data transfer costs
- Use Azure CDN for static content
- Implement traffic routing optimization
- Monitor bandwidth usage
Monitoring:
- Set up cost alerts and budgets
- Use Azure Cost Management
- Implement resource tagging
- Regular cost reviews
Azure Cost Management Integration
from azure.mgmt.consumption import ConsumptionManagementClient
from azure.identity import DefaultAzureCredential
class AzureCostMonitor:
def __init__(self, subscription_id):
credential = DefaultAzureCredential()
self.client = ConsumptionManagementClient(credential, subscription_id)
self.subscription_id = subscription_id
def get_broxi_costs(self, start_date, end_date):
"""Get costs for BroxiAI resources"""
scope = f"/subscriptions/{self.subscription_id}"
usage_details = self.client.usage_details.list(
scope=scope,
filter=f"properties/usageStart ge '{start_date}' and properties/usageEnd le '{end_date}' and contains(properties/resourceName, 'broxi')"
)
total_cost = 0
cost_breakdown = {}
for detail in usage_details:
service_name = detail.properties.consumed_service
cost = detail.properties.cost
total_cost += cost
if service_name not in cost_breakdown:
cost_breakdown[service_name] = 0
cost_breakdown[service_name] += cost
return {
"total_cost": total_cost,
"breakdown": cost_breakdown,
"period": f"{start_date} to {end_date}"
}
Monitoring and Analytics
Azure Monitor Dashboard
Custom Dashboard Configuration
{
"dashboard_config": {
"name": "BroxiAI Production Monitoring",
"tiles": [
{
"type": "metric",
"title": "Workflow Execution Rate",
"metric": "custom/WorkflowExecutions",
"aggregation": "count",
"time_range": "PT1H"
},
{
"type": "metric",
"title": "Average Response Time",
"metric": "requests/duration",
"aggregation": "average",
"time_range": "PT1H"
},
{
"type": "log",
"title": "Recent Errors",
"query": "traces | where severityLevel >= 3 | top 10 by timestamp desc",
"time_range": "PT1H"
}
]
}
}
Best Practices
Security Best Practices
Network Security
Use Azure Virtual Networks for isolation
Implement Network Security Groups (NSGs)
Use Azure Firewall for advanced protection
Enable DDoS protection
Use private endpoints for PaaS services
Identity and Access
Implement Azure AD integration
Use Managed Identities where possible
Follow principle of least privilege
Enable Multi-Factor Authentication
Regular access reviews
Data Protection
Enable encryption at rest and in transit
Use customer-managed keys when required
Implement data loss prevention (DLP)
Regular security assessments
Compliance monitoring
Performance Best Practices
Application Optimization
Use Azure CDN for global content delivery
Implement caching strategies
Optimize database queries
Use connection pooling
Monitor performance metrics
Scalability Planning
Design for auto-scaling
Use Azure Load Balancer
Implement circuit breakers
Plan for traffic spikes
Regular capacity planning
Next Steps
After Azure integration:
Security Review: Conduct security assessment
Performance Testing: Load test the integration
Cost Optimization: Monitor and optimize costs
Compliance Validation: Ensure regulatory compliance
Disaster Recovery: Test DR procedures
Related Guides
AWS Integration: Multi-cloud strategies
Security: Security best practices
Monitoring: Comprehensive monitoring
Azure integration provides enterprise-grade security, compliance, and scalability for BroxiAI applications. Follow Microsoft's Well-Architected Framework for optimal results.
Last updated