Sales Assistant

Build an intelligent sales assistant with BroxiAI for lead qualification, product recommendations, and automated sales processes

Learn how to create a comprehensive AI-powered sales assistant that can qualify leads, provide product recommendations, handle objections, and automate key parts of your sales process while maintaining human oversight.

What You'll Build

A sophisticated sales assistant that:

  • Qualifies leads through intelligent conversations

  • Provides personalized product recommendations

  • Handles common objections professionally

  • Schedules meetings and follow-ups

  • Integrates with CRM systems

  • Tracks sales metrics and performance

  • Escalates to human sales reps when needed

Prerequisites

  • BroxiAI account with API access

  • OpenAI API key or other LLM provider

  • CRM system access (Salesforce, HubSpot, etc.)

  • Customer database or lead sources

  • Calendar integration (optional)

  • Email automation platform (optional)

Architecture Overview

Step 1: Lead Qualification System

Lead Scoring Component

Lead Qualification Framework

# Lead qualification scoring
lead_qualification_agent = {
    "component": "LeadQualificationAgent",
    "config": {
        "model": "gpt-4",
        "temperature": 0.3,
        "system_prompt": """
You are an expert sales qualification assistant. Your goal is to qualify leads using the BANT framework:

BUDGET: Do they have budget for our solution?
AUTHORITY: Are they a decision maker or influencer?
NEED: Do they have a clear need for our product?
TIMELINE: What's their purchasing timeline?

QUALIFICATION CRITERIA:
- High Quality Lead: 3-4 BANT criteria met
- Medium Quality Lead: 2 BANT criteria met
- Low Quality Lead: 0-1 BANT criteria met

CONVERSATION APPROACH:
1. Build rapport and understand their situation
2. Ask discovery questions naturally in conversation
3. Listen for buying signals and pain points
4. Score each BANT criteria (0-1) based on responses
5. Provide personalized value propositions

DISCOVERY QUESTIONS:
Budget: "What's your current investment in [relevant area]?"
Authority: "Who else would be involved in this decision?"
Need: "What challenges are you facing with [specific area]?"
Timeline: "When are you looking to implement a solution?"

Never be pushy or sales-y. Focus on understanding their needs first.
        """,
        "max_tokens": 1000,
        "tools": [
            "lead_scoring",
            "crm_lookup",
            "product_matcher"
        ]
    }
}

Lead Scoring Logic

class LeadScorer:
    def __init__(self):
        self.bant_criteria = {
            "budget": 0,
            "authority": 0, 
            "need": 0,
            "timeline": 0
        }
        self.scoring_keywords = {
            "budget": {
                "positive": ["budget", "allocated", "approved", "investment", "spend"],
                "negative": ["no budget", "tight budget", "free", "cheap"]
            },
            "authority": {
                "positive": ["decision maker", "I decide", "my choice", "I approve"],
                "negative": ["need approval", "not my decision", "my boss decides"]
            },
            "need": {
                "positive": ["problem", "challenge", "need", "pain", "difficulty"],
                "negative": ["working fine", "satisfied", "no issues"]
            },
            "timeline": {
                "positive": ["soon", "quickly", "urgent", "this quarter", "ASAP"],
                "negative": ["eventually", "someday", "no rush", "future"]
            }
        }
    
    def score_conversation(self, conversation_text):
        """Score lead based on conversation content"""
        
        scores = {}
        
        for criterion, keywords in self.scoring_keywords.items():
            positive_score = sum(1 for word in keywords["positive"] 
                               if word.lower() in conversation_text.lower())
            negative_score = sum(1 for word in keywords["negative"] 
                               if word.lower() in conversation_text.lower())
            
            # Calculate score (0-1 scale)
            raw_score = max(0, positive_score - negative_score)
            normalized_score = min(1.0, raw_score / 3)  # Cap at 1.0
            scores[criterion] = normalized_score
        
        # Calculate overall score
        overall_score = sum(scores.values()) / len(scores)
        
        # Determine lead quality
        if overall_score >= 0.75:
            quality = "High"
        elif overall_score >= 0.5:
            quality = "Medium"
        else:
            quality = "Low"
        
        return {
            "overall_score": overall_score,
            "quality": quality,
            "bant_scores": scores,
            "recommendations": self.get_recommendations(scores, quality)
        }
    
    def get_recommendations(self, scores, quality):
        """Get next steps recommendations"""
        
        recommendations = []
        
        if quality == "High":
            recommendations.append("Schedule demo call immediately")
            recommendations.append("Send pricing information")
            recommendations.append("Involve sales manager")
        elif quality == "Medium":
            recommendations.extend([
                "Gather more qualification information",
                "Send case studies and ROI calculator",
                "Schedule follow-up call"
            ])
        else:
            recommendations.extend([
                "Add to nurture campaign",
                "Send educational content",
                "Re-qualify in 3 months"
            ])
        
        # Specific recommendations based on weak areas
        if scores["budget"] < 0.5:
            recommendations.append("Explore budget and ROI justification")
        if scores["authority"] < 0.5:
            recommendations.append("Identify and engage decision makers")
        if scores["need"] < 0.5:
            recommendations.append("Develop pain points and business case")
        if scores["timeline"] < 0.5:
            recommendations.append("Create urgency and compelling events")
        
        return recommendations

Conversation Flow Management

Dynamic Conversation Handler

class SalesConversationManager:
    def __init__(self):
        self.conversation_stages = {
            "greeting": self.handle_greeting,
            "discovery": self.handle_discovery,
            "qualification": self.handle_qualification,
            "presentation": self.handle_presentation,
            "objection": self.handle_objection,
            "closing": self.handle_closing
        }
        self.current_stage = "greeting"
    
    def handle_greeting(self, user_input, context):
        """Handle initial greeting and rapport building"""
        
        greeting_prompt = f"""
        Greet the prospect warmly and start building rapport. 
        
        Lead Information:
        - Name: {context.get('name', 'there')}
        - Company: {context.get('company', 'Unknown')}
        - Source: {context.get('source', 'Website')}
        
        Goals:
        1. Make them feel welcome and valued
        2. Confirm their interest/inquiry
        3. Ask permission to ask a few questions
        4. Transition naturally to discovery
        
        Keep it conversational and professional.
        """
        
        return self.generate_response(greeting_prompt, user_input)
    
    def handle_discovery(self, user_input, context):
        """Handle discovery and needs assessment"""
        
        discovery_prompt = f"""
        You're in the discovery phase. Focus on understanding their:
        
        BUSINESS SITUATION:
        - Current challenges and pain points
        - Existing solutions and what's not working
        - Goals and desired outcomes
        - Key metrics and success criteria
        
        DISCOVERY QUESTIONS TO EXPLORE:
        - "What's your biggest challenge with [relevant area]?"
        - "How are you currently handling [specific process]?"
        - "What would an ideal solution look like?"
        - "What metrics matter most to your success?"
        
        Listen actively and ask follow-up questions based on their responses.
        
        Previous conversation context: {context.get('conversation_history', [])}
        """
        
        return self.generate_response(discovery_prompt, user_input)
    
    def handle_qualification(self, user_input, context):
        """Handle BANT qualification"""
        
        qualification_prompt = f"""
        Continue the discovery while gathering BANT qualification information:
        
        BUDGET EXPLORATION:
        - "What's your current investment in this area?"
        - "Have you allocated budget for this type of solution?"
        - "What's the cost of not solving this problem?"
        
        AUTHORITY IDENTIFICATION:
        - "Who else would be involved in evaluating a solution?"
        - "What's your role in the decision-making process?"
        - "Who would need to approve this investment?"
        
        NEED VALIDATION:
        - "How urgent is solving this problem?"
        - "What happens if you don't address this soon?"
        - "How much time/money is this costing you?"
        
        TIMELINE ASSESSMENT:
        - "When are you looking to implement a solution?"
        - "What's driving the timing for this project?"
        - "Are there any deadlines or events we should know about?"
        
        Weave these questions naturally into the conversation.
        """
        
        return self.generate_response(qualification_prompt, user_input)
    
    def determine_next_stage(self, user_input, current_context):
        """Determine the next conversation stage"""
        
        # Analyze conversation to determine stage transition
        stage_analysis = self.analyze_conversation_stage(user_input, current_context)
        
        if stage_analysis["ready_for_next_stage"]:
            stage_order = ["greeting", "discovery", "qualification", "presentation", "closing"]
            current_index = stage_order.index(self.current_stage)
            
            if current_index < len(stage_order) - 1:
                self.current_stage = stage_order[current_index + 1]
        
        # Handle objections at any stage
        if stage_analysis["objection_detected"]:
            self.current_stage = "objection"
        
        return self.current_stage

Step 2: Product Recommendation Engine

Intelligent Product Matching

Product Recommendation System

class ProductRecommendationEngine:
    def __init__(self):
        self.product_catalog = self.load_product_catalog()
        self.recommendation_rules = self.load_recommendation_rules()
    
    def load_product_catalog(self):
        """Load product catalog with features and use cases"""
        
        return {
            "starter_plan": {
                "name": "Starter Plan",
                "price": "$99/month",
                "features": [
                    "Up to 10 workflows",
                    "Basic integrations",
                    "Email support",
                    "Standard templates"
                ],
                "ideal_for": [
                    "Small businesses",
                    "Startups",
                    "Individual professionals",
                    "Testing and evaluation"
                ],
                "use_cases": [
                    "Simple chatbots",
                    "Basic automation",
                    "Content generation",
                    "Customer service"
                ],
                "company_size": "1-10 employees",
                "technical_level": "beginner"
            },
            "professional_plan": {
                "name": "Professional Plan", 
                "price": "$299/month",
                "features": [
                    "Unlimited workflows",
                    "Advanced integrations",
                    "Priority support",
                    "Custom templates",
                    "Analytics dashboard",
                    "Team collaboration"
                ],
                "ideal_for": [
                    "Growing businesses",
                    "Marketing teams",
                    "Sales organizations",
                    "Customer service departments"
                ],
                "use_cases": [
                    "Multi-agent systems",
                    "Complex workflows",
                    "CRM integration",
                    "Lead qualification",
                    "Content automation"
                ],
                "company_size": "10-100 employees",
                "technical_level": "intermediate"
            },
            "enterprise_plan": {
                "name": "Enterprise Plan",
                "price": "Custom pricing",
                "features": [
                    "Unlimited everything",
                    "Custom integrations",
                    "Dedicated support",
                    "White-label options",
                    "Advanced security",
                    "Custom development",
                    "SLA guarantees"
                ],
                "ideal_for": [
                    "Large enterprises",
                    "Complex organizations",
                    "High-volume users",
                    "Compliance-sensitive industries"
                ],
                "use_cases": [
                    "Enterprise automation",
                    "Compliance workflows",
                    "Custom AI solutions",
                    "Large-scale deployments"
                ],
                "company_size": "100+ employees",
                "technical_level": "advanced"
            }
        }
    
    def recommend_products(self, lead_profile, needs_assessment):
        """Generate personalized product recommendations"""
        
        scores = {}
        
        for product_id, product in self.product_catalog.items():
            score = self.calculate_product_fit_score(
                product, lead_profile, needs_assessment
            )
            scores[product_id] = score
        
        # Sort by score and return top recommendations
        sorted_products = sorted(scores.items(), key=lambda x: x[1], reverse=True)
        
        recommendations = []
        for product_id, score in sorted_products[:3]:  # Top 3 recommendations
            product = self.product_catalog[product_id]
            recommendations.append({
                "product": product,
                "fit_score": score,
                "reasoning": self.generate_recommendation_reasoning(
                    product, lead_profile, needs_assessment
                )
            })
        
        return recommendations
    
    def calculate_product_fit_score(self, product, lead_profile, needs_assessment):
        """Calculate how well a product fits the lead's needs"""
        
        score = 0
        
        # Company size fit
        company_size = lead_profile.get("company_size", 0)
        if product["company_size"] == "1-10 employees" and company_size <= 10:
            score += 30
        elif product["company_size"] == "10-100 employees" and 10 <= company_size <= 100:
            score += 30
        elif product["company_size"] == "100+ employees" and company_size > 100:
            score += 30
        
        # Technical level fit
        tech_level = lead_profile.get("technical_level", "beginner")
        if product["technical_level"] == tech_level:
            score += 25
        
        # Use case alignment
        lead_use_cases = needs_assessment.get("use_cases", [])
        matching_use_cases = set(lead_use_cases) & set(product["use_cases"])
        score += len(matching_use_cases) * 10
        
        # Industry fit
        lead_industry = lead_profile.get("industry", "")
        if lead_industry in product.get("target_industries", []):
            score += 15
        
        # Budget alignment
        budget = lead_profile.get("budget", 0)
        if product["price"] == "Custom pricing":
            if budget > 1000:  # Enterprise budget
                score += 20
        else:
            product_price = int(product["price"].replace("$", "").replace("/month", ""))
            if budget >= product_price:
                score += 20
        
        return min(score, 100)  # Cap at 100
    
    def generate_recommendation_reasoning(self, product, lead_profile, needs_assessment):
        """Generate explanation for why this product is recommended"""
        
        reasons = []
        
        # Add specific reasons based on fit factors
        company_size = lead_profile.get("company_size", 0)
        if product["company_size"] == "1-10 employees" and company_size <= 10:
            reasons.append("Perfect fit for your team size")
        
        use_cases = needs_assessment.get("use_cases", [])
        matching_cases = set(use_cases) & set(product["use_cases"])
        if matching_cases:
            reasons.append(f"Supports your key use cases: {', '.join(matching_cases)}")
        
        pain_points = needs_assessment.get("pain_points", [])
        for pain_point in pain_points:
            if pain_point.lower() in [feature.lower() for feature in product["features"]]:
                reasons.append(f"Addresses your '{pain_point}' challenge")
        
        return reasons

Personalized Presentations

Dynamic Presentation Generator

class PresentationGenerator:
    def __init__(self):
        self.presentation_templates = self.load_templates()
    
    def generate_personalized_presentation(self, lead_profile, recommended_products):
        """Generate a personalized presentation"""
        
        presentation_prompt = f"""
        Create a compelling, personalized product presentation for this prospect:
        
        PROSPECT PROFILE:
        - Company: {lead_profile.get('company', 'Unknown')}
        - Industry: {lead_profile.get('industry', 'Unknown')}
        - Size: {lead_profile.get('company_size', 'Unknown')} employees
        - Role: {lead_profile.get('role', 'Unknown')}
        - Main challenges: {lead_profile.get('pain_points', [])}
        - Goals: {lead_profile.get('goals', [])}
        
        RECOMMENDED SOLUTION:
        {self.format_product_recommendation(recommended_products[0])}
        
        PRESENTATION STRUCTURE:
        1. Problem acknowledgment - Start by acknowledging their specific challenges
        2. Solution overview - Present our solution in context of their needs
        3. Key benefits - Focus on benefits that matter to them specifically  
        4. Success story - Share relevant case study from similar company
        5. ROI projection - Quantify potential value for their situation
        6. Implementation - Outline next steps and timeline
        
        GUIDELINES:
        - Make it conversational, not a formal pitch
        - Use their company name and specific pain points
        - Focus on outcomes, not just features
        - Include specific metrics and ROI when possible
        - End with a clear call to action
        
        Keep each section concise but compelling.
        """
        
        return self.generate_response(presentation_prompt)
    
    def format_product_recommendation(self, recommendation):
        """Format product recommendation for presentation"""
        
        product = recommendation["product"]
        reasoning = recommendation["reasoning"]
        
        return f"""
        Product: {product["name"]} ({product["price"]})
        
        Key Features:
        {chr(10).join(f"• {feature}" for feature in product["features"])}
        
        Why it's right for you:
        {chr(10).join(f"• {reason}" for reason in reasoning)}
        
        Fit Score: {recommendation["fit_score"]}/100
        """

Step 3: Objection Handling System

Common Objections Database

Objection Recognition and Response

class ObjectionHandler:
    def __init__(self):
        self.objection_patterns = self.load_objection_patterns()
        self.response_frameworks = self.load_response_frameworks()
    
    def load_objection_patterns(self):
        """Load common sales objections and patterns"""
        
        return {
            "price": {
                "patterns": [
                    "too expensive", "can't afford", "budget constraints",
                    "cheaper option", "price is high", "cost too much"
                ],
                "category": "price",
                "urgency": "high"
            },
            "timing": {
                "patterns": [
                    "not ready", "bad timing", "maybe later", "in the future",
                    "next year", "too busy", "other priorities"
                ],
                "category": "timing",
                "urgency": "medium"
            },
            "authority": {
                "patterns": [
                    "need approval", "talk to my boss", "committee decision",
                    "not my call", "someone else decides"
                ],
                "category": "authority",
                "urgency": "medium"
            },
            "need": {
                "patterns": [
                    "don't need", "current solution works", "not a priority",
                    "happy with what we have", "no problems"
                ],
                "category": "need",
                "urgency": "high"
            },
            "trust": {
                "patterns": [
                    "never heard of you", "too new", "not established",
                    "need references", "proof it works"
                ],
                "category": "trust",
                "urgency": "high"
            },
            "competition": {
                "patterns": [
                    "looking at others", "comparing options", "competitor mentioned",
                    "already have quotes"
                ],
                "category": "competition",
                "urgency": "medium"
            }
        }
    
    def detect_objection(self, user_input):
        """Detect objection type from user input"""
        
        detected_objections = []
        
        for objection_type, objection_data in self.objection_patterns.items():
            for pattern in objection_data["patterns"]:
                if pattern.lower() in user_input.lower():
                    detected_objections.append({
                        "type": objection_type,
                        "pattern": pattern,
                        "category": objection_data["category"],
                        "urgency": objection_data["urgency"]
                    })
                    break
        
        return detected_objections
    
    def handle_objection(self, objection_type, user_input, context):
        """Handle specific objection using appropriate framework"""
        
        if objection_type == "price":
            return self.handle_price_objection(user_input, context)
        elif objection_type == "timing":
            return self.handle_timing_objection(user_input, context)
        elif objection_type == "authority":
            return self.handle_authority_objection(user_input, context)
        elif objection_type == "need":
            return self.handle_need_objection(user_input, context)
        elif objection_type == "trust":
            return self.handle_trust_objection(user_input, context)
        elif objection_type == "competition":
            return self.handle_competition_objection(user_input, context)
        else:
            return self.handle_generic_objection(user_input, context)
    
    def handle_price_objection(self, user_input, context):
        """Handle price-related objections"""
        
        price_handling_prompt = f"""
        The prospect has raised a price objection: "{user_input}"
        
        Use this framework to respond:
        
        1. ACKNOWLEDGE: "I understand price is an important consideration..."
        
        2. ISOLATE: "If we could work out the investment, is there anything else that would prevent you from moving forward?"
        
        3. VALUE: Reinforce the value and ROI:
        - Cost of not solving their problem
        - Quantified benefits and savings
        - ROI timeframe
        
        4. REFRAME: 
        - "Investment in solution vs. cost of problem"
        - "Cost per employee/month breaks down to..."
        - "Compared to cost of [their current approach]..."
        
        5. OPTIONS: Offer alternatives:
        - Different pricing tiers
        - Phased implementation
        - Payment terms
        - Pilot program
        
        Context: {context}
        
        Be empathetic but confident in your value proposition.
        """
        
        return self.generate_response(price_handling_prompt)
    
    def handle_timing_objection(self, user_input, context):
        """Handle timing-related objections"""
        
        timing_handling_prompt = f"""
        The prospect has raised a timing objection: "{user_input}"
        
        Response framework:
        
        1. UNDERSTAND: "Help me understand what makes now not the right time?"
        
        2. EXPLORE CONSEQUENCES: 
        - "What happens if you wait to address this?"
        - "How much is this costing you each month you delay?"
        - "What would need to change for timing to be right?"
        
        3. CREATE URGENCY:
        - Limited-time offers or bonuses
        - Seasonal factors affecting their business
        - Competitive advantages of acting now
        - Implementation timeline benefits
        
        4. ALTERNATIVE APPROACHES:
        - Pilot program starting now
        - Phased implementation
        - Preparation work while waiting
        
        Context: {context}
        
        Focus on opportunity cost and competitive advantage.
        """
        
        return self.generate_response(timing_handling_prompt)
    
    def handle_authority_objection(self, user_input, context):
        """Handle authority/decision-making objections"""
        
        authority_handling_prompt = f"""
        The prospect has raised an authority objection: "{user_input}"
        
        Response approach:
        
        1. CLARIFY PROCESS: "Help me understand your decision-making process..."
        
        2. IDENTIFY STAKEHOLDERS:
        - "Who else would be involved in evaluating this?"
        - "What criteria are most important to [decision maker]?"
        - "What concerns might they have?"
        
        3. BUILD COALITION:
        - "How can I help you build a case for this?"
        - "What information would be most valuable to share?"
        - "Would it be helpful if I presented to the team?"
        
        4. PROVIDE TOOLS:
        - ROI calculator
        - Executive summary
        - Comparison charts
        - Implementation timeline
        
        Context: {context}
        
        Position yourself as a helpful resource, not a pushy salesperson.
        """
        
        return self.generate_response(authority_handling_prompt)

Step 4: CRM Integration

Salesforce Integration

Lead Management and Tracking

from simple_salesforce import Salesforce

class SalesforceCRMIntegration:
    def __init__(self, username, password, security_token):
        self.sf = Salesforce(
            username=username,
            password=password,
            security_token=security_token
        )
    
    def create_or_update_lead(self, lead_data, conversation_data):
        """Create or update lead in Salesforce"""
        
        # Check if lead exists
        existing_lead = self.find_existing_lead(lead_data["email"])
        
        if existing_lead:
            return self.update_lead(existing_lead["Id"], lead_data, conversation_data)
        else:
            return self.create_lead(lead_data, conversation_data)
    
    def create_lead(self, lead_data, conversation_data):
        """Create new lead in Salesforce"""
        
        lead_record = {
            "FirstName": lead_data.get("first_name", ""),
            "LastName": lead_data.get("last_name", "Unknown"),
            "Email": lead_data["email"],
            "Company": lead_data.get("company", "Unknown"),
            "Title": lead_data.get("title", ""),
            "Phone": lead_data.get("phone", ""),
            "Website": lead_data.get("website", ""),
            "Industry": lead_data.get("industry", ""),
            "LeadSource": "AI Sales Assistant",
            "Status": self.determine_lead_status(conversation_data),
            "Rating": self.determine_lead_rating(conversation_data),
            # Custom fields
            "AI_Qualification_Score__c": conversation_data.get("qualification_score", 0),
            "AI_Conversation_Summary__c": conversation_data.get("summary", ""),
            "Recommended_Product__c": conversation_data.get("recommended_product", ""),
            "Next_Action__c": conversation_data.get("next_action", ""),
            "BANT_Budget__c": conversation_data.get("bant_scores", {}).get("budget", 0),
            "BANT_Authority__c": conversation_data.get("bant_scores", {}).get("authority", 0),
            "BANT_Need__c": conversation_data.get("bant_scores", {}).get("need", 0),
            "BANT_Timeline__c": conversation_data.get("bant_scores", {}).get("timeline", 0)
        }
        
        result = self.sf.Lead.create(lead_record)
        
        # Create activity record
        self.create_activity_record(result["id"], conversation_data)
        
        return result
    
    def update_lead(self, lead_id, lead_data, conversation_data):
        """Update existing lead with new conversation data"""
        
        update_data = {
            "Status": self.determine_lead_status(conversation_data),
            "Rating": self.determine_lead_rating(conversation_data),
            "AI_Qualification_Score__c": conversation_data.get("qualification_score", 0),
            "AI_Last_Interaction__c": datetime.utcnow().isoformat(),
            "AI_Conversation_Count__c": conversation_data.get("interaction_count", 1),
            "Recommended_Product__c": conversation_data.get("recommended_product", ""),
            "Next_Action__c": conversation_data.get("next_action", "")
        }
        
        result = self.sf.Lead.update(lead_id, update_data)
        
        # Create activity record
        self.create_activity_record(lead_id, conversation_data)
        
        return result
    
    def create_activity_record(self, lead_id, conversation_data):
        """Create activity record for AI conversation"""
        
        activity_record = {
            "Subject": f"AI Sales Assistant Conversation - {conversation_data.get('stage', 'Discovery')}",
            "Description": conversation_data.get("conversation_summary", ""),
            "Status": "Completed",
            "Type": "AI Conversation",
            "WhoId": lead_id,
            "ActivityDate": datetime.utcnow().date().isoformat(),
            "Duration_in_Minutes__c": conversation_data.get("duration_minutes", 0),
            "AI_Sentiment__c": conversation_data.get("sentiment", "Neutral"),
            "AI_Intent__c": conversation_data.get("intent", "Information"),
            "Objections_Raised__c": ", ".join(conversation_data.get("objections", [])),
            "Follow_Up_Required__c": conversation_data.get("follow_up_required", False)
        }
        
        return self.sf.Task.create(activity_record)
    
    def determine_lead_status(self, conversation_data):
        """Determine appropriate lead status based on conversation"""
        
        quality = conversation_data.get("quality", "Low")
        stage = conversation_data.get("stage", "discovery")
        
        if quality == "High" and stage in ["presentation", "closing"]:
            return "Working - Contacted"
        elif quality == "Medium":
            return "Open - Not Contacted"
        else:
            return "Unqualified"
    
    def determine_lead_rating(self, conversation_data):
        """Determine lead rating based on qualification score"""
        
        score = conversation_data.get("qualification_score", 0)
        
        if score >= 0.8:
            return "Hot"
        elif score >= 0.6:
            return "Warm"
        else:
            return "Cold"
    
    def get_lead_history(self, email):
        """Get lead interaction history"""
        
        # Query lead
        lead_query = f"SELECT Id, Name, Email, Company, Status, Rating FROM Lead WHERE Email = '{email}'"
        leads = self.sf.query(lead_query)
        
        if not leads["records"]:
            return None
        
        lead = leads["records"][0]
        
        # Get activities
        activities_query = f"SELECT Id, Subject, Description, CreatedDate, Type FROM Task WHERE WhoId = '{lead['Id']}' ORDER BY CreatedDate DESC"
        activities = self.sf.query(activities_query)
        
        return {
            "lead": lead,
            "activities": activities["records"]
        }

HubSpot Integration

Alternative CRM Integration

import hubspot
from hubspot.crm.contacts import SimplePublicObjectInput

class HubSpotCRMIntegration:
    def __init__(self, api_key):
        self.client = hubspot.Client.create(api_token=api_key)
    
    def create_or_update_contact(self, lead_data, conversation_data):
        """Create or update contact in HubSpot"""
        
        # Check if contact exists
        existing_contact = self.find_contact_by_email(lead_data["email"])
        
        if existing_contact:
            return self.update_contact(existing_contact.id, lead_data, conversation_data)
        else:
            return self.create_contact(lead_data, conversation_data)
    
    def create_contact(self, lead_data, conversation_data):
        """Create new contact in HubSpot"""
        
        properties = {
            "email": lead_data["email"],
            "firstname": lead_data.get("first_name", ""),
            "lastname": lead_data.get("last_name", "Unknown"),
            "company": lead_data.get("company", ""),
            "jobtitle": lead_data.get("title", ""),
            "phone": lead_data.get("phone", ""),
            "website": lead_data.get("website", ""),
            "industry": lead_data.get("industry", ""),
            "lifecyclestage": self.determine_lifecycle_stage(conversation_data),
            "lead_status": self.determine_lead_status(conversation_data),
            # Custom properties
            "ai_qualification_score": conversation_data.get("qualification_score", 0),
            "ai_conversation_summary": conversation_data.get("summary", ""),
            "recommended_product": conversation_data.get("recommended_product", ""),
            "next_action": conversation_data.get("next_action", "")
        }
        
        simple_public_object_input = SimplePublicObjectInput(properties=properties)
        result = self.client.crm.contacts.basic_api.create(simple_public_object_input)
        
        # Create note
        self.create_engagement_note(result.id, conversation_data)
        
        return result
    
    def create_engagement_note(self, contact_id, conversation_data):
        """Create engagement note for conversation"""
        
        note_properties = {
            "hs_note_body": f"""
AI Sales Assistant Conversation Summary

Stage: {conversation_data.get('stage', 'Discovery')}
Quality: {conversation_data.get('quality', 'Unknown')}
Qualification Score: {conversation_data.get('qualification_score', 0)}/1.0

Key Points:
{conversation_data.get('conversation_summary', 'No summary available')}

Recommended Product: {conversation_data.get('recommended_product', 'TBD')}
Next Action: {conversation_data.get('next_action', 'Follow up required')}

BANT Scores:
- Budget: {conversation_data.get('bant_scores', {}).get('budget', 0)}/1.0
- Authority: {conversation_data.get('bant_scores', {}).get('authority', 0)}/1.0  
- Need: {conversation_data.get('bant_scores', {}).get('need', 0)}/1.0
- Timeline: {conversation_data.get('bant_scores', {}).get('timeline', 0)}/1.0

Objections Raised: {', '.join(conversation_data.get('objections', ['None']))}
            """,
            "hs_timestamp": int(time.time() * 1000)
        }
        
        note_input = SimplePublicObjectInput(properties=note_properties)
        result = self.client.crm.objects.notes.basic_api.create(note_input)
        
        # Associate note with contact
        self.client.crm.objects.notes.associations_api.create(
            object_id=result.id,
            to_object_type="contacts",
            to_object_id=contact_id,
            association_type="note_to_contact"
        )
        
        return result

Step 5: Meeting Scheduling Integration

Calendar Integration

Automated Meeting Scheduling

import calendar_integration  # Calendly, Google Calendar, etc.

class MeetingScheduler:
    def __init__(self, calendar_provider="calendly"):
        self.calendar_provider = calendar_provider
        self.scheduler = self.init_scheduler()
    
    def suggest_meeting(self, lead_data, conversation_context):
        """Suggest appropriate meeting based on lead qualification"""
        
        quality = conversation_context.get("quality", "Low")
        stage = conversation_context.get("stage", "discovery")
        
        if quality == "High" and stage in ["presentation", "closing"]:
            return self.suggest_demo_call(lead_data, conversation_context)
        elif quality == "Medium":
            return self.suggest_discovery_call(lead_data, conversation_context)
        else:
            return self.suggest_educational_session(lead_data, conversation_context)
    
    def suggest_demo_call(self, lead_data, conversation_context):
        """Suggest demo call for qualified prospects"""
        
        meeting_suggestion = {
            "type": "product_demo",
            "duration": 30,
            "title": f"BroxiAI Demo for {lead_data.get('company', 'Your Team')}",
            "description": f"""
Thank you for your interest in BroxiAI! Based on our conversation, I'd love to show you how our platform can specifically help with:

• {conversation_context.get('primary_pain_point', 'Your automation needs')}
• {conversation_context.get('recommended_product', 'Our recommended solution')}

This 30-minute demo will be customized to your specific use case and requirements.

What to expect:
• Live demonstration of BroxiAI features
• Personalized use case walkthrough  
• Q&A session
• Next steps discussion

Please let me know what time works best for you!
            """,
            "meeting_url": self.generate_meeting_link("demo", lead_data),
            "urgency": "high"
        }
        
        return meeting_suggestion
    
    def suggest_discovery_call(self, lead_data, conversation_context):
        """Suggest discovery call for medium-qualified prospects"""
        
        meeting_suggestion = {
            "type": "discovery_call",
            "duration": 20,
            "title": f"Discovery Call - {lead_data.get('company', 'Your Business')} AI Needs",
            "description": f"""
I'd love to learn more about your specific needs and see how BroxiAI might be able to help.

This brief 20-minute call will help us:
• Better understand your current challenges
• Explore potential AI automation opportunities
• Determine if BroxiAI is a good fit
• Answer any questions you have

No pressure - just a friendly conversation about your needs!
            """,
            "meeting_url": self.generate_meeting_link("discovery", lead_data),
            "urgency": "medium"
        }
        
        return meeting_suggestion
    
    def generate_meeting_link(self, meeting_type, lead_data):
        """Generate appropriate meeting link based on type"""
        
        if self.calendar_provider == "calendly":
            base_url = "https://calendly.com/broxi-sales"
            
            if meeting_type == "demo":
                return f"{base_url}/30-minute-demo"
            elif meeting_type == "discovery":
                return f"{base_url}/20-minute-discovery"
            else:
                return f"{base_url}/15-minute-chat"
        
        # Add other calendar providers as needed
        return "https://broxi.ai/schedule"
    
    def schedule_follow_up(self, lead_data, conversation_context, follow_up_type="standard"):
        """Schedule automated follow-up based on conversation outcome"""
        
        follow_up_sequences = {
            "high_intent": {
                "immediate": "Send demo link and meeting request",
                "1_hour": "Follow up if no meeting scheduled",
                "1_day": "Send case study and ROI calculator",
                "3_days": "Personal video message from sales rep"
            },
            "medium_intent": {
                "4_hours": "Send educational content",
                "2_days": "Follow up with discovery call invitation",
                "1_week": "Send industry-specific use cases",
                "2_weeks": "Check in with new features/updates"
            },
            "low_intent": {
                "1_day": "Add to nurture sequence",
                "1_week": "Send weekly newsletter",
                "1_month": "Re-qualification attempt",
                "3_months": "Seasonal check-in"
            }
        }
        
        intent_level = self.determine_intent_level(conversation_context)
        sequence = follow_up_sequences.get(intent_level, follow_up_sequences["low_intent"])
        
        return sequence

Step 6: Performance Analytics

Comprehensive Analytics Dashboard

Sales Performance Tracking

class SalesAnalytics:
    def __init__(self):
        self.metrics_collector = MetricsCollector()
        self.reporting_engine = ReportingEngine()
    
    def track_conversation_metrics(self, conversation_data):
        """Track key conversation metrics"""
        
        metrics = {
            "conversation_id": conversation_data["id"],
            "timestamp": datetime.utcnow(),
            "duration_minutes": conversation_data.get("duration", 0),
            "message_count": conversation_data.get("message_count", 0),
            "qualification_score": conversation_data.get("qualification_score", 0),
            "lead_quality": conversation_data.get("quality", "Low"),
            "stage_reached": conversation_data.get("final_stage", "greeting"),
            "objections_count": len(conversation_data.get("objections", [])),
            "meeting_scheduled": conversation_data.get("meeting_scheduled", False),
            "product_recommended": conversation_data.get("recommended_product", ""),
            "sentiment_score": conversation_data.get("sentiment", 0),
            "conversion_outcome": conversation_data.get("outcome", "ongoing")
        }
        
        self.metrics_collector.record_metrics(metrics)
        
        return metrics
    
    def generate_daily_report(self, date=None):
        """Generate daily sales assistant performance report"""
        
        if not date:
            date = datetime.utcnow().date()
        
        daily_metrics = self.metrics_collector.get_daily_metrics(date)
        
        report = {
            "date": date.isoformat(),
            "summary": {
                "total_conversations": daily_metrics["conversation_count"],
                "high_quality_leads": daily_metrics["high_quality_count"],
                "meetings_scheduled": daily_metrics["meetings_scheduled"],
                "average_qualification_score": daily_metrics["avg_qualification_score"],
                "conversion_rate": daily_metrics["conversion_rate"]
            },
            "conversation_stages": {
                "greeting": daily_metrics["stage_breakdown"]["greeting"],
                "discovery": daily_metrics["stage_breakdown"]["discovery"],
                "qualification": daily_metrics["stage_breakdown"]["qualification"],
                "presentation": daily_metrics["stage_breakdown"]["presentation"],
                "closing": daily_metrics["stage_breakdown"]["closing"]
            },
            "lead_quality_distribution": {
                "high": daily_metrics["quality_breakdown"]["high"],
                "medium": daily_metrics["quality_breakdown"]["medium"],
                "low": daily_metrics["quality_breakdown"]["low"]
            },
            "common_objections": daily_metrics["top_objections"],
            "product_recommendations": daily_metrics["product_breakdown"],
            "performance_trends": self.calculate_trends(date)
        }
        
        return report
    
    def calculate_roi_metrics(self, period_days=30):
        """Calculate ROI metrics for sales assistant"""
        
        metrics = self.metrics_collector.get_period_metrics(period_days)
        
        # Calculate costs
        ai_costs = metrics["total_ai_api_costs"]
        platform_costs = metrics["platform_costs"]
        total_costs = ai_costs + platform_costs
        
        # Calculate revenue impact
        meetings_scheduled = metrics["total_meetings_scheduled"]
        estimated_close_rate = 0.25  # 25% close rate assumption
        average_deal_size = metrics["average_deal_size"]
        estimated_revenue = meetings_scheduled * estimated_close_rate * average_deal_size
        
        # Calculate time savings
        conversations_handled = metrics["total_conversations"]
        avg_conversation_time = metrics["avg_conversation_duration"]
        human_equivalent_time = conversations_handled * avg_conversation_time
        hourly_rate = 50  # Sales rep hourly rate
        time_savings_value = human_equivalent_time * hourly_rate / 60
        
        roi_metrics = {
            "period_days": period_days,
            "total_costs": total_costs,
            "estimated_revenue": estimated_revenue,
            "time_savings_value": time_savings_value,
            "total_value": estimated_revenue + time_savings_value,
            "roi_percentage": ((estimated_revenue + time_savings_value - total_costs) / total_costs) * 100,
            "conversations_handled": conversations_handled,
            "meetings_generated": meetings_scheduled,
            "cost_per_meeting": total_costs / meetings_scheduled if meetings_scheduled > 0 else 0,
            "cost_per_conversation": total_costs / conversations_handled if conversations_handled > 0 else 0
        }
        
        return roi_metrics

Step 7: Advanced Features

A/B Testing Framework

Conversation Optimization

class ConversationABTesting:
    def __init__(self):
        self.test_variants = {}
        self.results_tracker = {}
    
    def create_ab_test(self, test_name, variants):
        """Create A/B test for conversation approaches"""
        
        self.test_variants[test_name] = {
            "variants": variants,
            "traffic_split": 1.0 / len(variants),  # Equal split
            "success_metric": "qualification_score",
            "minimum_sample_size": 100,
            "start_date": datetime.utcnow(),
            "status": "active"
        }
        
        # Initialize results tracking
        for variant in variants:
            self.results_tracker[f"{test_name}_{variant['name']}"] = {
                "conversations": 0,
                "total_score": 0,
                "meetings_scheduled": 0,
                "objections_handled": 0
            }
    
    def get_variant_for_conversation(self, test_name, conversation_id):
        """Get A/B test variant for conversation"""
        
        if test_name not in self.test_variants:
            return None
        
        test = self.test_variants[test_name]
        if test["status"] != "active":
            return None
        
        # Use conversation ID hash for consistent assignment
        import hashlib
        hash_value = int(hashlib.md5(conversation_id.encode()).hexdigest(), 16)
        variant_index = hash_value % len(test["variants"])
        
        return test["variants"][variant_index]
    
    def record_test_result(self, test_name, variant_name, conversation_result):
        """Record A/B test conversation result"""
        
        key = f"{test_name}_{variant_name}"
        if key not in self.results_tracker:
            return
        
        tracker = self.results_tracker[key]
        tracker["conversations"] += 1
        tracker["total_score"] += conversation_result.get("qualification_score", 0)
        
        if conversation_result.get("meeting_scheduled", False):
            tracker["meetings_scheduled"] += 1
        
        tracker["objections_handled"] += len(conversation_result.get("objections", []))
    
    def analyze_test_results(self, test_name):
        """Analyze A/B test results and determine winner"""
        
        if test_name not in self.test_variants:
            return None
        
        test = self.test_variants[test_name]
        results = {}
        
        for variant in test["variants"]:
            key = f"{test_name}_{variant['name']}"
            tracker = self.results_tracker[key]
            
            if tracker["conversations"] > 0:
                results[variant["name"]] = {
                    "conversations": tracker["conversations"],
                    "avg_qualification_score": tracker["total_score"] / tracker["conversations"],
                    "meeting_rate": tracker["meetings_scheduled"] / tracker["conversations"],
                    "objection_handling_rate": tracker["objections_handled"] / tracker["conversations"]
                }
        
        # Determine statistical significance and winner
        winner = self.determine_statistical_winner(results)
        
        return {
            "test_name": test_name,
            "results": results,
            "winner": winner,
            "confidence_level": winner.get("confidence", 0) if winner else 0,
            "recommendation": self.get_test_recommendation(results, winner)
        }

Sentiment Analysis Integration

Real-time Sentiment Monitoring

from textblob import TextBlob
import re

class SentimentAnalyzer:
    def __init__(self):
        self.sentiment_thresholds = {
            "very_positive": 0.5,
            "positive": 0.1,
            "neutral": -0.1,
            "negative": -0.5
        }
    
    def analyze_conversation_sentiment(self, conversation_history):
        """Analyze sentiment throughout conversation"""
        
        sentiment_timeline = []
        
        for message in conversation_history:
            if message["role"] == "user":
                sentiment = self.analyze_message_sentiment(message["content"])
                sentiment_timeline.append({
                    "timestamp": message.get("timestamp", datetime.utcnow()),
                    "sentiment_score": sentiment["score"],
                    "sentiment_label": sentiment["label"],
                    "message": message["content"]
                })
        
        # Calculate overall sentiment trends
        overall_sentiment = self.calculate_overall_sentiment(sentiment_timeline)
        sentiment_trend = self.calculate_sentiment_trend(sentiment_timeline)
        
        return {
            "timeline": sentiment_timeline,
            "overall_sentiment": overall_sentiment,
            "sentiment_trend": sentiment_trend,
            "alerts": self.generate_sentiment_alerts(sentiment_timeline)
        }
    
    def analyze_message_sentiment(self, message):
        """Analyze sentiment of individual message"""
        
        # Clean message
        cleaned_message = self.clean_message(message)
        
        # Use TextBlob for basic sentiment analysis
        blob = TextBlob(cleaned_message)
        polarity = blob.sentiment.polarity  # -1 to 1 scale
        
        # Determine sentiment label
        if polarity >= self.sentiment_thresholds["very_positive"]:
            label = "very_positive"
        elif polarity >= self.sentiment_thresholds["positive"]:
            label = "positive"
        elif polarity >= self.sentiment_thresholds["neutral"]:
            label = "neutral"
        elif polarity >= self.sentiment_thresholds["negative"]:
            label = "negative"
        else:
            label = "very_negative"
        
        return {
            "score": polarity,
            "label": label,
            "confidence": abs(polarity)
        }
    
    def generate_sentiment_alerts(self, sentiment_timeline):
        """Generate alerts based on sentiment patterns"""
        
        alerts = []
        
        # Check for negative sentiment
        recent_messages = sentiment_timeline[-3:] if len(sentiment_timeline) >= 3 else sentiment_timeline
        recent_scores = [msg["sentiment_score"] for msg in recent_messages]
        
        if len(recent_scores) >= 2:
            avg_recent_sentiment = sum(recent_scores) / len(recent_scores)
            
            if avg_recent_sentiment < -0.3:
                alerts.append({
                    "type": "negative_sentiment",
                    "severity": "high",
                    "message": "Customer sentiment has turned negative",
                    "recommendation": "Consider escalating to human agent or addressing concerns"
                })
            elif avg_recent_sentiment < -0.1:
                alerts.append({
                    "type": "declining_sentiment", 
                    "severity": "medium",
                    "message": "Customer sentiment is declining",
                    "recommendation": "Acknowledge concerns and adjust approach"
                })
        
        # Check for sudden sentiment drops
        if len(sentiment_timeline) >= 2:
            current_sentiment = sentiment_timeline[-1]["sentiment_score"]
            previous_sentiment = sentiment_timeline[-2]["sentiment_score"]
            
            if current_sentiment - previous_sentiment < -0.4:
                alerts.append({
                    "type": "sudden_sentiment_drop",
                    "severity": "high", 
                    "message": "Sudden negative sentiment change detected",
                    "recommendation": "Immediate attention required - potential objection or concern"
                })
        
        return alerts

Best Practices

Sales Assistant Optimization

Conversation Flow Optimization

  • Start with rapport building before qualification

  • Use natural, conversational language

  • Ask one question at a time

  • Listen actively and respond to specific points

  • Qualify naturally through conversation, not interrogation

Lead Scoring Accuracy

  • Continuously refine scoring algorithms based on actual outcomes

  • Include multiple data points beyond BANT

  • Consider industry-specific qualification criteria

  • Update scoring models based on closed-won/lost analysis

  • Balance automation with human judgment

Objection Handling Excellence

  • Maintain database of common objections and proven responses

  • Train on industry-specific objections

  • Use frameworks (Acknowledge, Isolate, Value, Close)

  • Escalate complex objections to human reps

  • Track objection resolution success rates

Integration Best Practices

CRM Data Quality

  • Ensure consistent data mapping between systems

  • Implement data validation and deduplication

  • Regular data cleanup and enrichment

  • Track data quality metrics

  • Maintain audit trails for compliance

Performance Monitoring

  • Set up real-time dashboards for key metrics

  • Monitor conversation quality scores

  • Track conversion rates by traffic source

  • Analyze drop-off points in conversations

  • Regular A/B testing of conversation approaches

Troubleshooting

Common Issues

Low Qualification Rates

  • Review and refine discovery questions

  • Improve rapport building techniques

  • Adjust qualification criteria for your market

  • Analyze lost opportunities for patterns

  • Train on industry-specific pain points

High Objection Rates

  • Review pricing presentation approach

  • Improve value proposition messaging

  • Address common objections proactively

  • Enhance trust-building content

  • Consider market positioning adjustments

Poor CRM Data Quality

  • Implement data validation rules

  • Regular data cleanup processes

  • Train team on data entry standards

  • Use data enrichment services

  • Set up automated data quality alerts

Next Steps

After implementing your sales assistant:

  1. Performance Optimization: Continuously monitor and improve conversation quality

  2. Training Enhancement: Regular updates to conversation scripts and objection handling

  3. Integration Expansion: Connect additional tools and data sources

  4. Team Training: Ensure smooth handoffs between AI and human sales reps

  5. Scale Gradually: Expand to handle more complex sales scenarios


Last updated