BroxiAI
  • Welcome
  • Account
    • Quickstart
    • Password
    • Team
      • Create team
      • Join team
      • Payment & Billing
      • Payment Policy
    • Global Variables
    • API Keys
  • Workflow
    • Overview
    • Quickstart
    • Components
    • Playground
    • Publish Workflow
    • File Manager
    • Webhook
  • Components
    • Input & Output
    • Agents
    • AI Models
    • Data
    • Embeddings
    • Helper
    • Loader
    • Logic
    • Memories
    • Processing
    • Prompt
    • Tools
    • Vector database
  • Advanced
    • Use Agent in flow
    • MCP Connect
    • MCP Astra DB
  • Integration
    • Apify
    • AssemblyAI
    • Composio
    • Google
      • Google Auth
      • Vertex AI
    • Notion
      • Setup
      • Notion Conversational Agent
      • Notion Meeting Notes Agent
Powered by GitBook
On this page
  • Use a vector store component in a flow​
  • Astra DB Vector Store​
  • AstraDB Graph vector store​
  • Cassandra​
  • Cassandra Graph Vector Store​
  • Chroma DB​
  • Clickhouse​
  • Couchbase​
  • Local DB​
  • Elasticsearch​
  • FAISS​
  • Graph RAG​
  • Hyper-Converged Database (HCD) Vector Store​
  • Milvus​
  • MongoDB Atlas​
  • Opensearch​
  • PGVector​
  • Pinecone​
  • Qdrant​
  • Redis​
  • Supabase​
  • Upstash​
  • Vectara​
  • Vectara Search​
  • Weaviate​
  • Weaviate Search​
  1. Components

Vector database

PreviousToolsNextUse Agent in flow

Last updated 12 days ago

Vector databases store vector data, which backs AI workloads like chatbots and Retrieval Augmented Generation.

Vector database components establish connections to existing vector databases or create in-memory vector stores for storing and retrieving vector data.

Vector database components are distinct from , which are built specifically for storing and retrieving chat messages from external databases.

Use a vector store component in a flow

This example uses the Astra DB vector store component. Your vector store component's parameters and authentication may be different, but the document ingestion workflow is the same. A document is loaded from a local machine and chunked. The Astra DB vector store generates embeddings with the connected component, and stores them in the connected Astra DB database.

This vector data can then be retrieved for workloads like Retrieval Augmented Generation.

This component implements a Vector Store using Astra DB with search capabilities.

Name
Display Name
Info

token

Astra DB Application Token

The authentication token for accessing Astra DB.

environment

Environment

The environment for the Astra DB API Endpoint. For example, dev or prod.

database_name

Database

The database name for the Astra DB instance.

api_endpoint

Astra DB API Endpoint

The API endpoint for the Astra DB instance. This supersedes the database selection.

collection_name

Collection

The name of the collection within Astra DB where the vectors are stored.

keyspace

Keyspace

An optional keyspace within Astra DB to use for the collection.

embedding_choice

Embedding Model or Astra Vectorize

Choose an embedding model or use Astra vectorize.

embedding_model

Embedding Model

Specify the embedding model. Not required for Astra vectorize collections.

number_of_results

Number of Search Results

The number of search results to return (default: 4).

search_type

Search Type

The search type to use. The options are Similarity, Similarity with score threshold, and MMR (Max Marginal Relevance).

search_score_threshold

Search Score Threshold

The minimum similarity score threshold for search results when using the Similarity with score threshold option.

advanced_search_filter

Search Metadata Filter

An optional dictionary of filters to apply to the search query.

autodetect_collection

Autodetect Collection

A boolean flag to determine whether to autodetect the collection.

content_field

Content Field

A field to use as the text content field for the vector store.

deletion_field

Deletion Based On Field

When provided, documents in the target collection with metadata field values matching the input metadata field value are deleted before new data is loaded.

ignore_invalid_documents

Ignore Invalid Documents

A boolean flag to determine whether to ignore invalid documents at runtime.

astradb_vectorstore_kwargs

AstraDBVectorStore Parameters

An optional dictionary of additional parameters for the AstraDBVectorStore.

Name
Display Name
Info

vector_store

Vector Store

Astra DB vector store instance configured with the specified parameters.

search_results

Search Results

The Astra DB Vector Store component offers two methods for generating embeddings.

  1. Astra Vectorize: Use Astra DB's built-in embedding generation service. When creating a new collection, choose the embeddings provider and models, including NVIDIA's NV-Embed-QA model hosted by Datastax.

important

The embedding model selection is made when creating a new collection and cannot be changed later.

The Astra DB component includes hybrid search, which is enabled by default.

The component fields related to hybrid search are Search Query, Lexical Terms, and Reranker.

  • Search Query finds results by vector similarity.

  • Lexical Terms is a comma-separated string of keywords, like features, data, attributes, characteristics.

  • Reranker is the re-ranker model used in the hybrid search. The re-ranker model is nvidia/llama-3.2-nv.reranker.

To use Hybrid search in the Astra DB component, do the following:

  1. Click New Flow > RAG > Hybrid Search RAG.

  2. In the OpenAI model component, add your OpenAI API key.

  3. In the Astra DB vector store component, add your Astra DB Application Token.

  4. In the Database field, select your database.

  5. In the Collection field, select the collection you want to search. You must enable support for hybrid search when you create the collection.

  6. In the Playground, enter a question about your data, such as What are the features of my data? Your query is sent to two components: an OpenAI model component and the Astra DB vector database component. The OpenAI component contains a prompt for creating the lexical query from your input:

You are a database query planner that takes a user's requests, and then converts to a search against the subject matter in question.
You should convert the query into:
1. A list of keywords to use against a Lucene text analyzer index, no more than 4. Strictly unigrams.
2. A question to use as the basis for a QA embedding engine.
Avoid common keywords associated with the user's subject matter.
  1. To view the keywords and questions the OpenAI component generates from your collection, in the OpenAI component, click .

  1. Keywords: features, data, attributes, characteristics

  2. Question: What characteristics can be identified in my data?

  1. To view the DataFrame generated from the OpenAI component's response, in the Structured Output component, click . The DataFrame is passed to a Parser component, which parses the contents of the Keywords column into a string.

    This string of comma-separated words is passed to the Lexical Terms port of the Astra DB component. Note that the Search Query port of the Astra DB port is connected to the Chat Input component from step 6. This Search Query is vectorized, and both the Search Query and Lexical Terms content are sent to the reranker at the find_and_rerank endpoint.

    The reranker compares the vector search results against the string of terms from the lexical search. The highest-ranked results of your hybrid search are returned to the Playground.

Name
Display Name
Info

collection_name

Collection Name

The name of the collection within AstraDB where the vectors will be stored (required)

token

Astra DB Application Token

Authentication token for accessing AstraDB (required)

api_endpoint

API Endpoint

API endpoint URL for the AstraDB service (required)

search_input

Search Input

Query string for similarity search

ingest_data

Ingest Data

Data to be ingested into the vector store

namespace

Namespace

Optional namespace within AstraDB to use for the collection

embedding

Embedding Model

Embedding model to use

metric

Metric

Distance metric for vector comparisons (options: "cosine", "euclidean", "dot_product")

setup_mode

Setup Mode

Configuration mode for setting up the vector store (options: "Sync", "Async", "Off")

pre_delete_collection

Pre Delete Collection

Boolean flag to determine whether to delete the collection before creating a new one

number_of_results

Number of Results

Number of results to return in similarity search (default: 4)

search_type

Search Type

Search type to use (options: "Similarity", "Graph Traversal", "Hybrid")

traversal_depth

Traversal Depth

Maximum depth for graph traversal searches (default: 1)

search_score_threshold

Search Score Threshold

Minimum similarity score threshold for search results

search_filter

Search Metadata Filter

Optional dictionary of filters to apply to the search query

Name
Display Name
Info

vector_store

Vector Store

Astra DB graph vector store instance configured with the specified parameters.

search_results

Search Results

The results of the similarity search as a list of Data objects.

Name
Type
Description

database_ref

String

Contact points for the database or AstraDB database ID

username

String

Username for the database (leave empty for AstraDB)

token

SecretString

User password for the database or AstraDB token

keyspace

String

Table Keyspace or AstraDB namespace

table_name

String

Name of the table or AstraDB collection

ttl_seconds

Integer

Time-to-live for added texts

batch_size

Integer

Number of data to process in a single batch

setup_mode

String

Configuration mode for setting up the Cassandra table

cluster_kwargs

Dict

Additional keyword arguments for the Cassandra cluster

search_query

String

Query for similarity search

ingest_data

Data

Data to be ingested into the vector store

embedding

Embeddings

Embedding function to use

number_of_results

Integer

Number of results to return in search

search_type

String

Type of search to perform

search_score_threshold

Float

Minimum similarity score for search results

search_filter

Dict

Metadata filters for search query

body_search

String

Document textual search terms

enable_body_search

Boolean

Flag to enable body search

Name
Type
Description

vector_store

Cassandra

A Cassandra vector store instance configured with the specified parameters.

search_results

List[Data]

The results of the similarity search as a list of Data objects.

This component implements a Cassandra Graph Vector Store with search capabilities.

Name
Display Name
Info

database_ref

Contact Points / Astra Database ID

Contact points for the database or AstraDB database ID (required)

username

Username

Username for the database (leave empty for AstraDB)

token

Password / AstraDB Token

User password for the database or AstraDB token (required)

keyspace

Keyspace

Table Keyspace or AstraDB namespace (required)

table_name

Table Name

The name of the table or AstraDB collection where vectors will be stored (required)

setup_mode

Setup Mode

Configuration mode for setting up the Cassandra table (options: "Sync", "Off", default: "Sync")

cluster_kwargs

Cluster arguments

Optional dictionary of additional keyword arguments for the Cassandra cluster

search_query

Search Query

Query string for similarity search

ingest_data

Ingest Data

Data to be ingested into the vector store (list of Data objects)

embedding

Embedding

Embedding model to use

number_of_results

Number of Results

Number of results to return in similarity search (default: 4)

search_type

Search Type

Search type to use (options: "Traversal", "MMR traversal", "Similarity", "Similarity with score threshold", "MMR (Max Marginal Relevance)", default: "Traversal")

depth

Depth of traversal

The maximum depth of edges to traverse (for "Traversal" or "MMR traversal" search types, default: 1)

search_score_threshold

Search Score Threshold

Minimum similarity score threshold for search results (for "Similarity with score threshold" search type)

search_filter

Search Metadata Filter

Optional dictionary of filters to apply to the search query

Name
Display Name
Info

vector_store

Vector Store

A Cassandra Graph vector store instance configured with the specified parameters.

search_results

Search Results

The results of the similarity search as a list of Data objects.

This component creates a Chroma Vector Store with search capabilities.

The Chroma DB component creates an ephemeral vector database for experimentation and vector storage.

  1. To use this component in a flow, connect it to a component that outputs Data or DataFrame. This example splits text from a URL component, and computes embeddings with the connected OpenAI Embeddings component. Chroma DB computes embeddings by default, but you can connect your own embeddings model, as seen in this example.

  1. In the Chroma DB component, in the Collection field, enter a name for your embeddings collection.

  2. Optionally, to persist the Chroma database, in the Persist field, enter a directory to store the chroma.sqlite3 file. This example uses ./chroma-db to create a directory relative to where BroxiAI is running.

  3. To load data and embeddings into your Chroma database, in the Chroma DB component, click .

tip

When loading duplicate documents, enable the Allow Duplicates option in Chroma DB if you want to store multiple copies of the same content, or disable it to automatically deduplicate your data.

  1. To view the split data, in the Split Text component, click .

  2. To query your loaded data, open the Playground and query your database. Your input is converted to vector data and compared to the stored vectors in a vector similarity search.

Name
Type
Description

collection_name

String

The name of the Chroma collection. Default: "BroxiAI".

persist_directory

String

The directory to persist the Chroma database.

search_query

String

The query to search for in the vector store.

ingest_data

Data

The data to ingest into the vector store (list of Data objects).

embedding

Embeddings

The embedding function to use for the vector store.

chroma_server_cors_allow_origins

String

CORS allow origins for the Chroma server.

chroma_server_host

String

Host for the Chroma server.

chroma_server_http_port

Integer

HTTP port for the Chroma server.

chroma_server_grpc_port

Integer

gRPC port for the Chroma server.

chroma_server_ssl_enabled

Boolean

Enable SSL for the Chroma server.

allow_duplicates

Boolean

Allow duplicate documents in the vector store.

search_type

String

Type of search to perform: "Similarity" or "MMR".

number_of_results

Integer

Number of results to return from the search. Default: 10.

limit

Integer

Limit the number of records to compare when Allow Duplicates is False.

Name
Type
Description

vector_store

Chroma

Chroma vector store instance

search_results

List[Data]

Results of similarity search

Name
Display Name
Info

host

hostname

Clickhouse server hostname (required, default: "localhost")

port

port

Clickhouse server port (required, default: 8123)

database

database

Clickhouse database name (required)

table

Table name

Clickhouse table name (required)

username

The ClickHouse user name.

Username for authentication (required)

password

The password for username.

Password for authentication (required)

index_type

index_type

Type of the index (options: "annoy", "vector_similarity", default: "annoy")

metric

metric

Metric to compute distance (options: "angular", "euclidean", "manhattan", "hamming", "dot", default: "angular")

secure

Use https/TLS

Overrides inferred values from the interface or port arguments (default: false)

index_param

Param of the index

Index parameters (default: "'L2Distance',100")

index_query_params

index query params

Additional index query parameters

search_query

Search Query

Query string for similarity search

ingest_data

Ingest Data

Data to be ingested into the vector store

embedding

Embedding

Embedding model to use

number_of_results

Number of Results

Number of results to return in similarity search (default: 4)

score_threshold

Score threshold

Threshold for similarity scores

Name
Display Name
Info

vector_store

Vector Store

Built Clickhouse vector store

search_results

Search Results

Results of the similarity search as a list of Data objects

Name
Type
Description

couchbase_connection_string

SecretString

Couchbase Cluster connection string (required).

couchbase_username

String

Couchbase username (required).

couchbase_password

SecretString

Couchbase password (required).

bucket_name

String

Name of the Couchbase bucket (required).

scope_name

String

Name of the Couchbase scope (required).

collection_name

String

Name of the Couchbase collection (required).

index_name

String

Name of the Couchbase index (required).

search_query

String

The query to search for in the vector store.

ingest_data

Data

The data to ingest into the vector store (list of Data objects).

embedding

Embeddings

The embedding function to use for the vector store.

number_of_results

Integer

Number of results to return from the search. Default: 4 (advanced).

Name
Type
Description

vector_store

CouchbaseVectorStore

A Couchbase vector store instance configured with the specified parameters.

The Local DB component is BroxiAI's enhanced version of Chroma DB.

The component adds a user-friendly interface with two modes (Ingest and Retrieve), automatic collection management, and built-in persistence in BroxiAI's cache directory.

Local DB includes Ingest and Retrieve modes.

The Retrieve mode can query your Chroma DB collections.

Name
Type
Description

collection_name

String

The name of the Chroma collection. Default: "BroxiAI".

persist_directory

String

Custom base directory to save the vector store. Collections will be stored under {directory}/vector_stores/{collection_name}. If not specified, it will use your system's cache folder.

existing_collections

String

Select a previously created collection to search through its stored data.

embedding

Embeddings

The embedding function to use for the vector store.

allow_duplicates

Boolean

If false, will not add documents that are already in the Vector Store.

search_type

String

Type of search to perform: "Similarity" or "MMR".

ingest_data

Data/DataFrame

Data to store. It will be embedded and indexed for semantic search.

search_query

String

Enter text to search for similar content in the selected collection.

number_of_results

Integer

Number of results to return. Default: 10.

limit

Integer

Limit the number of records to compare when Allow Duplicates is False.

Name
Type
Description

vector_store

Chroma

A local Chroma vector store instance configured with the specified parameters.

search_results

Results of similarity search.

Name
Type
Description

es_url

String

Elasticsearch server URL

es_user

String

Username for Elasticsearch authentication

es_password

SecretString

Password for Elasticsearch authentication

index_name

String

Name of the Elasticsearch index

strategy

String

Strategy for vector search ("approximate_k_nearest_neighbors" or "script_scoring")

distance_strategy

String

Strategy for distance calculation ("COSINE", "EUCLIDEAN_DISTANCE", "DOT_PRODUCT")

search_query

String

Query for similarity search

ingest_data

Data

Data to be ingested into the vector store

embedding

Embeddings

Embedding function to use

number_of_results

Integer

Number of results to return in search (default: 4)

Name
Type
Description

vector_store

ElasticsearchStore

Elasticsearch vector store instance

search_results

List[Data]

Results of similarity search

Name
Type
Description

index_name

String

The name of the FAISS index. Default: "broxiai_index".

persist_directory

String

Path to save the FAISS index. It will be relative to where BroxiAI is running.

search_query

String

The query to search for in the vector store.

ingest_data

Data

The data to ingest into the vector store (list of Data objects or documents).

allow_dangerous_deserialization

Boolean

Set to True to allow loading pickle files from untrusted sources. Default: True (advanced).

embedding

Embeddings

The embedding function to use for the vector store.

number_of_results

Integer

Number of results to return from the search. Default: 4 (advanced).

Name
Type
Description

vector_store

FAISS

A FAISS vector store instance configured with the specified parameters.

For an example flow, see the Graph RAG template.

Name
Display Name
Info

embedding_model

Embedding Model

vector_store

Vector Store Connection

Connection to the vector store.

edge_definition

Edge Definition

strategy

Traversal Strategies

The strategy to use for graph traversal. Strategy options are dynamically loaded from available strategies.

search_query

Search Query

The query to search for in the vector store.

graphrag_strategy_kwargs

Strategy Parameters

Name
Type
Description

search_results

List[Data]

This component implements a Vector Store using HCD.

To use the HCD vector store, add your deployment's collection name, username, password, and HCD Data API endpoint. The endpoint must be formatted like http[s]://**DOMAIN_NAME** or **IP_ADDRESS**[:port], for example, http://192.0.2.250:8181.

Replace DOMAIN_NAME or IP_ADDRESS with the domain name or IP address of your HCD Data API connection.

To use the HCD vector store for embeddings ingestion, connect it to an embeddings model and a file loader:

Name
Display Name
Info

collection_name

Collection Name

The name of the collection within HCD where the vectors will be stored (required)

username

HCD Username

Authentication username for accessing HCD (default: "hcd-superuser", required)

password

HCD Password

Authentication password for accessing HCD (required)

api_endpoint

HCD API Endpoint

API endpoint URL for the HCD service (required)

search_input

Search Input

Query string for similarity search

ingest_data

Ingest Data

Data to be ingested into the vector store

namespace

Namespace

Optional namespace within HCD to use for the collection (default: "default_namespace")

ca_certificate

CA Certificate

Optional CA certificate for TLS connections to HCD

metric

Metric

Optional distance metric for vector comparisons (options: "cosine", "dot_product", "euclidean")

batch_size

Batch Size

Optional number of data to process in a single batch

bulk_insert_batch_concurrency

Bulk Insert Batch Concurrency

Optional concurrency level for bulk insert operations

bulk_insert_overwrite_concurrency

Bulk Insert Overwrite Concurrency

Optional concurrency level for bulk insert operations that overwrite existing data

bulk_delete_concurrency

Bulk Delete Concurrency

Optional concurrency level for bulk delete operations

setup_mode

Setup Mode

Configuration mode for setting up the vector store (options: "Sync", "Async", "Off", default: "Sync")

pre_delete_collection

Pre Delete Collection

Boolean flag to determine whether to delete the collection before creating a new one

metadata_indexing_include

Metadata Indexing Include

Optional list of metadata fields to include in the indexing

embedding

Embedding or Astra Vectorize

Allows either an embedding model or an Astra Vectorize configuration

metadata_indexing_exclude

Metadata Indexing Exclude

Optional list of metadata fields to exclude from the indexing

collection_indexing_policy

Collection Indexing Policy

Optional dictionary defining the indexing policy for the collection

number_of_results

Number of Results

Number of results to return in similarity search (default: 4)

search_type

Search Type

Search type to use (options: "Similarity", "Similarity with score threshold", "MMR (Max Marginal Relevance)", default: "Similarity")

search_score_threshold

Search Score Threshold

Minimum similarity score threshold for search results (default: 0)

search_filter

Search Metadata Filter

Optional dictionary of filters to apply to the search query

Name
Display Name
Info

vector_store

Vector Store

An HCD vector store instance The results of the similarity search as a list of Data objects.

search_results

Search Results

The results of the similarity search as a list of Data objects.

Name
Type
Description

collection_name

String

Name of the Milvus collection

collection_description

String

Description of the Milvus collection

uri

String

Connection URI for Milvus

password

SecretString

Password for Milvus

username

SecretString

Username for Milvus

batch_size

Integer

Number of data to process in a single batch

search_query

String

Query for similarity search

ingest_data

Data

Data to be ingested into the vector store

embedding

Embeddings

Embedding function to use

number_of_results

Integer

Number of results to return in search

search_type

String

Type of search to perform

search_score_threshold

Float

Minimum similarity score for search results

search_filter

Dict

Metadata filters for search query

setup_mode

String

Configuration mode for setting up the vector store

vector_dimensions

Integer

Number of dimensions of the vectors

pre_delete_collection

Boolean

Whether to delete the collection before creating a new one

Name
Type
Description

vector_store

Milvus

A Milvus vector store instance configured with the specified parameters.

Name
Type
Description

mongodb_atlas_cluster_uri

SecretString

The connection URI for your MongoDB Atlas cluster (required)

enable_mtls

Boolean

Enable mutual TLS authentication (default: false)

mongodb_atlas_client_cert

SecretString

Client certificate combined with private key for mTLS authentication (required if mTLS is enabled)

db_name

String

The name of the database to use (required)

collection_name

String

The name of the collection to use (required)

index_name

String

The name of the Atlas Search index, it should be a Vector Search (required)

insert_mode

String

How to insert new documents into the collection (options: "append", "overwrite", default: "append")

embedding

Embeddings

The embedding model to use

number_of_results

Integer

Number of results to return in similarity search (default: 4)

index_field

String

The field to index (default: "embedding")

filter_field

String

The field to filter the index

number_dimensions

Integer

Embedding context length (default: 1536)

similarity

String

The method used to measure similarity between vectors (options: "cosine", "euclidean", "dotProduct", default: "cosine")

quantization

String

Quantization reduces memory costs by converting 32-bit floats to smaller data types (options: "scalar", "binary")

Name
Type
Description

vector_store

MongoDBAtlasVectorSearch

MongoDB Atlas vector store instance

search_results

List[Data]

Results of similarity search

Name
Type
Description

opensearch_url

String

index_name

String

The index name where the vectors will be stored in OpenSearch cluster

search_input

String

Enter a search query. Leave empty to retrieve all documents or if hybrid search is being used

ingest_data

Data

Data to be ingested into the vector store

embedding

Embeddings

Embedding function to use

search_type

String

Valid values are "similarity", "similarity_score_threshold", "mmr"

number_of_results

Integer

Number of results to return in search

search_score_threshold

Float

Minimum similarity score threshold for search results

username

String

username for the opensource cluster

password

SecretString

password for the opensource cluster

use_ssl

Boolean

Use SSL

verify_certs

Boolean

Verify certificates

hybrid_search_query

String

Provide a custom hybrid search query in JSON format. This allows you to combine vector similarity and keyword matching

Name
Type
Description

vector_store

OpenSearchVectorSearch

OpenSearch vector store instance

search_results

List[Data]

Results of similarity search

Name
Type
Description

pg_server_url

SecretString

PostgreSQL server connection string

collection_name

String

Table name for the vector store

search_query

String

Query for similarity search

ingest_data

Data

Data to be ingested into the vector store

embedding

Embeddings

Embedding function to use

number_of_results

Integer

Number of results to return in search

Name
Type
Description

vector_store

PGVector

PGVector vector store instance

search_results

List[Data]

Results of similarity search

Name
Type
Description

index_name

String

Name of the Pinecone index

namespace

String

Namespace for the index

distance_strategy

String

Strategy for calculating distance between vectors

pinecone_api_key

SecretString

API key for Pinecone

text_key

String

Key in the record to use as text

search_query

String

Query for similarity search

ingest_data

Data

Data to be ingested into the vector store

embedding

Embeddings

Embedding function to use

number_of_results

Integer

Number of results to return in search

Name
Type
Description

vector_store

Pinecone

Pinecone vector store instance

search_results

List[Data]

Results of similarity search

Name
Type
Description

collection_name

String

Name of the Qdrant collection

host

String

Qdrant server host

port

Integer

Qdrant server port

grpc_port

Integer

Qdrant gRPC port

api_key

SecretString

API key for Qdrant

prefix

String

Prefix for Qdrant

timeout

Integer

Timeout for Qdrant operations

path

String

Path for Qdrant

url

String

URL for Qdrant

distance_func

String

Distance function for vector similarity

content_payload_key

String

Key for content payload

metadata_payload_key

String

Key for metadata payload

search_query

String

Query for similarity search

ingest_data

Data

Data to be ingested into the vector store

embedding

Embeddings

Embedding function to use

number_of_results

Integer

Number of results to return in search

Name
Type
Description

vector_store

Qdrant

Qdrant vector store instance

search_results

List[Data]

Results of similarity search

Name
Type
Description

redis_server_url

SecretString

Redis server connection string

redis_index_name

String

Name of the Redis index

code

String

Custom code for Redis (advanced)

schema

String

Schema for Redis index

search_query

String

Query for similarity search

ingest_data

Data

Data to be ingested into the vector store

number_of_results

Integer

Number of results to return in search

embedding

Embeddings

Embedding function to use

Name
Type
Description

vector_store

Redis

Redis vector store instance

search_results

List[Data]

Results of similarity search

Name
Type
Description

supabase_url

String

URL of the Supabase instance

supabase_service_key

SecretString

Service key for Supabase authentication

table_name

String

Name of the table in Supabase

query_name

String

Name of the query to use

search_query

String

Query for similarity search

ingest_data

Data

Data to be ingested into the vector store

embedding

Embeddings

Embedding function to use

number_of_results

Integer

Number of results to return in search

Name
Type
Description

vector_store

SupabaseVectorStore

Supabase vector store instance

search_results

List[Data]

Results of similarity search

Name
Type
Description

index_url

String

The URL of the Upstash index

index_token

SecretString

The token for the Upstash index

text_key

String

The key in the record to use as text

namespace

String

Namespace for the index

search_query

String

Query for similarity search

metadata_filter

String

Filters documents by metadata

ingest_data

Data

Data to be ingested into the vector store

embedding

Embeddings

Embedding function to use (optional)

number_of_results

Integer

Number of results to return in search

Name
Type
Description

vector_store

UpstashVectorStore

Upstash vector store instance

search_results

List[Data]

Results of similarity search

Name
Type
Description

vectara_customer_id

String

Vectara customer ID

vectara_corpus_id

String

Vectara corpus ID

vectara_api_key

SecretString

Vectara API key

embedding

Embeddings

Embedding function to use (optional)

ingest_data

List[Document/Data]

Data to be ingested into the vector store

search_query

String

Query for similarity search

number_of_results

Integer

Number of results to return in search

Name
Type
Description

vector_store

VectaraVectorStore

Vectara vector store instance

search_results

List[Data]

Results of similarity search

Name
Type
Description

search_type

String

Type of search, such as "Similarity" or "MMR"

input_value

String

Search query

vectara_customer_id

String

Vectara customer ID

vectara_corpus_id

String

Vectara corpus ID

vectara_api_key

SecretString

Vectara API key

files_url

List[String]

Optional URLs for file initialization

Name
Type
Description

search_results

List[Data]

Results of similarity search

Name
Type
Description

weaviate_url

String

Default instance URL

search_by_text

Boolean

Indicates whether to search by text

api_key

SecretString

Optional API key for authentication

index_name

String

Optional index name

text_key

String

Default text extraction key

input

Document

Document or record

embedding

Embeddings

Model used

attributes

List[String]

Optional additional attributes

Name
Type
Description

vector_store

WeaviateVectorStore

Weaviate vector store instance

Name
Type
Description

search_type

String

Type of search, such as "Similarity" or "MMR"

input_value

String

Search query

weaviate_url

String

Default instance URL

search_by_text

Boolean

Indicates whether to search by text

api_key

SecretString

Optional API key for authentication

index_name

String

Optional index name

text_key

String

Default text extraction key

embedding

Embeddings

Model used

attributes

List[String]

Optional additional attributes

Name
Type
Description

search_results

List[Data]

Results of similarity search

The user's chat input is embedded and compared to the vectors embedded during document ingestion for a similarity search. The results are output from the vector database component as a object and parsed into text. This text fills the {context} variable in the Prompt component, which informs the Open AI model component's responses.

Alternatively, connect the vector database component's Retriever port to a retriever tool, and then to an component. This enables the agent to use your vector database as a tool and make decisions based on the available data.

Astra DB Vector Store

For more information, see the .

Inputs

Outputs

The results of the similarity search as a list of objects.

Generate embeddings

Embedding Model: Use your own embedding model by connecting an component.

For more information, see the .

Hybrid search

performs a vector similarity search and a lexical search, compares the results of both searches, and then returns the most relevant results overall.

For more information, see the .

AstraDB Graph vector store

This component implements a Vector Store using AstraDB with graph capabilities. For more information, see the .

Inputs

Outputs

Cassandra

This component creates a Cassandra Vector Store with search capabilities. For more information, see the .

Inputs

Outputs

Cassandra Graph Vector Store

Inputs

Outputs

Chroma DB

ChromaDB receiving split text

For more information, see the .

Inputs

Outputs

Clickhouse

This component implements a Clickhouse Vector Store with search capabilities. For more information, see the .

Inputs

Outputs

Couchbase

This component creates a Couchbase Vector Store with search capabilities. For more information, see the .

Inputs

Outputs

Local DB

Local DB retrieving vectors

For more information, see the .

Inputs

Outputs

List

Elasticsearch

This component creates an Elasticsearch Vector Store with search capabilities. For more information, see the .

Inputs

Outputs

FAISS

This component creates a FAISS Vector Store with search capabilities. For more information, see the .

Inputs

Outputs

Graph RAG

This component performs Graph RAG (Retrieval Augmented Generation) traversal in a vector store, enabling graph-based document retrieval. For more information, see the .

Inputs

Specify the embedding model. This is not required for collections embedded with .

Edge definition for the graph traversal. For more information, see the .

Optional dictionary of additional parameters for the retrieval strategy. For more information, see the .

Outputs

Results of the graph-based document retrieval as a list of objects.

Hyper-Converged Database (HCD) Vector Store

HCD vector store embeddings ingestion

Inputs

Outputs

Milvus

This component creates a Milvus Vector Store with search capabilities. For more information, see the .

Inputs

Outputs

MongoDB Atlas

This component creates a MongoDB Atlas Vector Store with search capabilities. For more information, see the .

Inputs

Outputs

Opensearch

This component creates an Opensearch vector store with search capabilities For more information, see .

Inputs

URL for OpenSearch cluster (e.g. )

Outputs

PGVector

This component creates a PGVector Vector Store with search capabilities. For more information, see the .

Inputs

Outputs

Pinecone

This component creates a Pinecone Vector Store with search capabilities. For more information, see the .

Inputs

Outputs

Qdrant

This component creates a Qdrant Vector Store with search capabilities. For more information, see the .

Inputs

Outputs

Redis

This component creates a Redis Vector Store with search capabilities. For more information, see the .

Inputs

Outputs

Supabase

This component creates a connection to a Supabase Vector Store with search capabilities. For more information, see the .

Inputs

Outputs

Upstash

This component creates an Upstash Vector Store with search capabilities. For more information, see the .

Inputs

Outputs

Vectara

This component creates a Vectara Vector Store with search capabilities. For more information, see the .

Inputs

Outputs

Vectara Search

This component searches a Vectara Vector Store for documents based on the provided input. For more information, see the .

Inputs

Outputs

Weaviate

This component facilitates a Weaviate Vector Store setup, optimizing text and document indexing and retrieval. For more information, see the .

Inputs

Outputs

Weaviate Search

This component searches a Weaviate Vector Store for documents similar to the input. For more information, see the .

Inputs

Outputs

Data
agent
​
DataStax documentation
​
​
​
Embeddings
Astra DB Serverless documentation
​
DataStax documentation
​
Astra DB Serverless documentation
​
​
​
Cassandra documentation
​
​
​
​
​
​
Chroma documentation
​
​
​
Clickhouse Documentation
​
​
​
Couchbase documentation
​
​
​
Chroma documentation
​
​
​
Elasticsearch documentation
​
​
​
FAISS documentation
​
​
​
Graph RAG documentation
​
​
​
​
​
​
Milvus documentation
​
​
​
MongoDB Atlas documentation
​
​
​
Opensearch documentation
​
​
​
PGVector documentation
​
​
​
Pinecone documentation
​
​
​
Qdrant documentation
​
​
​
Redis documentation
​
​
​
Supabase documentation
​
​
​
Upstash documentation
​
​
​
Vectara documentation
​
​
​
Vectara documentation
​
​
​
Weaviate Documentation
​
​
​
Weaviate Documentation
​
​
Hybrid search
Data
Data
Astra vectorize
GraphRAG documentation
strategy documentation
Data
https://192.168.1.1:9200
memory components
​
model