BroxiAI
  • Welcome
  • Account
    • Quickstart
    • Password
    • Team
      • Create team
      • Join team
      • Payment & Billing
      • Payment Policy
    • Global Variables
    • API Keys
  • Workflow
    • Overview
    • Quickstart
    • Components
    • Playground
    • Publish Workflow
    • File Manager
    • Webhook
  • Components
    • Input & Output
    • Agents
    • AI Models
    • Data
    • Embeddings
    • Helper
    • Loader
    • Logic
    • Memories
    • Processing
    • Prompt
    • Tools
    • Vector database
  • Advanced
    • Use Agent in flow
    • MCP Connect
    • MCP Astra DB
  • Integration
    • Apify
    • AssemblyAI
    • Composio
    • Google
      • Google Auth
      • Vertex AI
    • Notion
      • Setup
      • Notion Conversational Agent
      • Notion Meeting Notes Agent
Powered by GitBook
On this page
  • Use an embeddings model component in a flow​
  • AI/ML​
  • Amazon Bedrock Embeddings​
  • Astra DB vectorize​
  • Azure OpenAI Embeddings​
  • Cloudflare Workers AI Embeddings​
  • Cohere Embeddings​
  • Embedding similarity​
  • Google generative AI embeddings​
  • Hugging Face Embeddings​
  • Hugging Face embeddings inference​
  • IBM watsonx embeddings​
  • LM Studio Embeddings​
  • MistralAI​
  • NVIDIA​
  • Ollama embeddings​
  • OpenAI Embeddings​
  • Text embedder​
  • VertexAI Embeddings​
  1. Components

Embeddings

PreviousDataNextHelper

Last updated 12 days ago

Embeddings models convert text into numerical vectors. These embeddings capture semantic meaning of the input text, and allow LLMs to understand context.

Refer to your specific component's documentation for more information on parameters.

Use an embeddings model component in a flow

In this example of a document ingestion pipeline, the OpenAI embeddings model is connected to a vector database. The component converts the text chunks into vectors and stores them in the vector database. The vectorized data can be used to inform AI workloads like chatbots, similarity searches, and agents.

This embeddings component uses an OpenAI API key for authentication. Refer to your specific embeddings component's documentation for more information on authentication.

URL component in a data ingestion pipeline

This component generates embeddings using the AI/ML API.

Name
Type
Description

model_name

String

The name of the AI/ML embedding model to use

aiml_api_key

SecretString

API key for authenticating with the AI/ML service

Name
Type
Description

embeddings

Embeddings

An instance of AIMLEmbeddingsImpl for generating embeddings

This component is used to load embedding models from Amazon Bedrock.

Name
Type
Description

credentials_profile_name

String

Name of the AWS credentials profile in ~/.aws/credentials or ~/.aws/config, which has access keys or role information

model_id

String

ID of the model to call, e.g., amazon.titan-embed-text-v1. This is equivalent to the modelId property in the list-foundation-models API

endpoint_url

String

URL to set a specific service endpoint other than the default AWS endpoint

region_name

String

AWS region to use, e.g., us-west-2. Falls back to AWS_DEFAULT_REGION environment variable or region specified in ~/.aws/config if not provided

Name
Type
Description

embeddings

Embeddings

An instance for generating embeddings using Amazon Bedrock

Connect this component to the Embeddings port of the Astra DB vector store component to generate embeddings.

Name
Display Name
Info

provider

Embedding Provider

The embedding provider to use

model_name

Model Name

The embedding model to use

authentication

Authentication

provider_api_key

Provider API Key

As an alternative to authentication, directly provide your embedding provider credentials.

model_parameters

Model Parameters

Additional model parameters

Name
Type
Description

embeddings

Embeddings

An instance for generating embeddings using Astra vectorize

This component generates embeddings using Azure OpenAI models.

Name
Type
Description

Model

String

Name of the model to use (default: text-embedding-3-small)

Azure Endpoint

String

Your Azure endpoint, including the resource. Example: https://example-resource.azure.openai.com/

Deployment Name

String

The name of the deployment

API Version

String

The API version to use, options include various dates

API Key

String

The API key to access the Azure OpenAI service

Name
Type
Description

embeddings

Embeddings

An instance for generating embeddings using Azure OpenAI

Name
Display Name
Info

account_id

Cloudflare account ID

api_token

Cloudflare API token

model_name

Model Name

strip_new_lines

Strip New Lines

Whether to strip new lines from the input text

batch_size

Batch Size

Number of texts to embed in each batch

api_base_url

Cloudflare API base URL

Base URL for the Cloudflare API

headers

Headers

Additional request headers

Name
Display Name
Info

embeddings

Embeddings

An instance for generating embeddings using Cloudflare Workers

Name
Type
Description

cohere_api_key

String

API key required to authenticate with the Cohere service

model

String

Language model used for embedding text documents and performing queries (default: embed-english-v2.0)

truncate

Boolean

Whether to truncate the input text to fit within the model's constraints (default: False)

Name
Type
Description

embeddings

Embeddings

An instance for generating embeddings using Cohere

This component computes selected forms of similarity between two embedding vectors.

Name
Display Name
Info

embedding_vectors

Embedding Vectors

A list containing exactly two data objects with embedding vectors to compare.

similarity_metric

Similarity Metric

Select the similarity metric to use. Options: "Cosine Similarity", "Euclidean Distance", "Manhattan Distance".

Name
Display Name
Info

similarity_data

Similarity Data

Data object containing the computed similarity score and additional information.

This component connects to Google's generative AI embedding service using the GoogleGenerativeAIEmbeddings class from the langchain-google-genai package.

Name
Display Name
Info

api_key

API Key

Secret API key for accessing Google's generative AI service (required)

model_name

Model Name

Name of the embedding model to use (default: "models/text-embedding-004")

Name
Display Name
Info

embeddings

Embeddings

Built GoogleGenerativeAIEmbeddings object

This component loads embedding models from HuggingFace.

Use this component to generate embeddings using locally downloaded Hugging Face models. Ensure you have sufficient computational resources to run the models.

Name
Display Name
Info

Cache Folder

Cache Folder

Folder path to cache HuggingFace models

Encode Kwargs

Encoding Arguments

Additional arguments for the encoding process

Model Kwargs

Model Arguments

Additional arguments for the model

Model Name

Model Name

Name of the HuggingFace model to use

Multi Process

Multi-Process

Whether to use multiple processes

Name
Display Name
Info

embeddings

Embeddings

The generated embeddings

Use this component to create embeddings with Hugging Face's hosted models, or to connect to your own locally hosted models.

Name
Display Name
Info

API Key

API Key

The API key for accessing the Hugging Face Inference API.

API URL

API URL

The URL of the Hugging Face Inference API.

Model Name

Model Name

The name of the model to use for embeddings.

Cache Folder

Cache Folder

The folder path to cache Hugging Face models.

Encode Kwargs

Encoding Arguments

Additional arguments for the encoding process.

Model Kwargs

Model Arguments

Additional arguments for the model.

Multi Process

Multi-Process

Whether to use multiple processes.

Name
Display Name
Info

embeddings

Embeddings

The generated embeddings.

To connect the local Hugging Face model to the Hugging Face embeddings inference component and use it in a flow, follow these steps:

  1. Create a Vector store RAG flow. There are two embeddings models in this flow that you can replace with Hugging Face embeddings inference components.

  2. Replace both OpenAI embeddings model components with Hugging Face model components.

  3. Connect both Hugging Face components to the Embeddings ports of the Astra DB vector store components.

  4. In the Hugging Face components, set the Inference Endpoint field to the URL of your local inference model. The API Key field is not required for local inference.

  5. Run the flow. The local inference models generate embeddings for the input text.

To use IBM watsonx.ai embeddings components, replace an embeddings component with the IBM watsonx.ai component in a flow.

An example document processing flow looks like the following:

This flow loads a PDF file from local storage and splits the text into chunks.

The IBM watsonx embeddings component converts the text chunks into embeddings, which are then stored in a Chroma DB vector store.

The component supports several default models with the following vector dimensions:

  • sentence-transformers/all-minilm-l12-v2: 384-dimensional embeddings

  • ibm/slate-125m-english-rtrvr-v2: 768-dimensional embeddings

  • ibm/slate-30m-english-rtrvr-v2: 768-dimensional embeddings

  • intfloat/multilingual-e5-large: 1024-dimensional embeddings

The component automatically fetches and updates the list of available models from your watsonx.ai instance when you provide your API endpoint and credentials.

Name
Display Name
Info

url

watsonx API Endpoint

The base URL of the API.

project_id

watsonx project id

The project ID for your watsonx.ai instance.

api_key

API Key

The API Key to use for the model.

model_name

Model Name

The name of the embedding model to use.

truncate_input_tokens

Truncate Input Tokens

The maximum number of tokens to process. Default: 200.

input_text

Include the original text in the output

Determines if the original text is included in the output. Default: True.

Name
Display Name
Info

embeddings

Embeddings

An instance for generating embeddings using watsonx.ai

Name
Display Name
Info

model

Model

The LM Studio model to use for generating embeddings

base_url

LM Studio Base URL

The base URL for the LM Studio API

api_key

LM Studio API Key

API key for authentication with LM Studio

temperature

Model Temperature

Temperature setting for the model

Name
Display Name
Info

embeddings

Embeddings

The generated embeddings

Name
Type
Description

model

String

The MistralAI model to use (default: "mistral-embed")

mistral_api_key

SecretString

API key for authenticating with MistralAI

max_concurrent_requests

Integer

Maximum number of concurrent API requests (default: 64)

max_retries

Integer

Maximum number of retry attempts for failed requests (default: 5)

timeout

Integer

Request timeout in seconds (default: 120)

endpoint

String

Custom API endpoint URL (default: https://api.mistral.ai/v1/)

Name
Type
Description

embeddings

Embeddings

MistralAIEmbeddings instance for generating embeddings

Name
Type
Description

model

String

The NVIDIA model to use for embeddings (e.g., nvidia/nv-embed-v1)

base_url

String

Base URL for the NVIDIA API (default: https://integrate.api.nvidia.com/v1)

nvidia_api_key

SecretString

API key for authenticating with NVIDIA's service

temperature

Float

Model temperature for embedding generation (default: 0.1)

Name
Type
Description

embeddings

Embeddings

NVIDIAEmbeddings instance for generating embeddings

To use this component in a flow, connect BroxiAI to your locally running Ollama server and select an embeddings model.

  1. In the Ollama component, in the Ollama Base URL field, enter the address for your locally running Ollama server. This value is set as the OLLAMA_HOST environment variable in Ollama. The default base URL is http://127.0.0.1:11434.

  2. To refresh the server's list of models, click .

  3. In the Ollama Model field, select an embeddings model. This example uses all-minilm:latest.

Name
Type
Description

Ollama Model

String

Name of the Ollama model to use (default: llama2)

Ollama Base URL

String

Base URL of the Ollama API (default: http://localhost:11434)

Model Temperature

Float

Temperature parameter for the model. Adjusts the randomness in the generated embeddings

Name
Type
Description

embeddings

Embeddings

An instance for generating embeddings using Ollama

Name
Type
Description

OpenAI API Key

String

The API key to use for accessing the OpenAI API

Default Headers

Dict

Default headers for the HTTP requests

Default Query

NestedDict

Default query parameters for the HTTP requests

Allowed Special

List

Special tokens allowed for processing (default: [])

Disallowed Special

List

Special tokens disallowed for processing (default: ["all"])

Chunk Size

Integer

Chunk size for processing (default: 1000)

Client

Any

HTTP client for making requests

Deployment

String

Deployment name for the model (default: text-embedding-3-small)

Embedding Context Length

Integer

Length of embedding context (default: 8191)

Max Retries

Integer

Maximum number of retries for failed requests (default: 6)

Model

String

Name of the model to use (default: text-embedding-3-small)

Model Kwargs

NestedDict

Additional keyword arguments for the model

OpenAI API Base

String

Base URL of the OpenAI API

OpenAI API Type

String

Type of the OpenAI API

OpenAI API Version

String

Version of the OpenAI API

OpenAI Organization

String

Organization associated with the API key

OpenAI Proxy

String

Proxy server for the requests

Request Timeout

Float

Timeout for the HTTP requests

Show Progress Bar

Boolean

Whether to show a progress bar for processing (default: False)

Skip Empty

Boolean

Whether to skip empty inputs (default: False)

TikToken Enable

Boolean

Whether to enable TikToken (default: True)

TikToken Model Name

String

Name of the TikToken model

Name
Type
Description

embeddings

Embeddings

An instance for generating embeddings using OpenAI

This component generates embeddings for a given message using a specified embedding model.

Name
Display Name
Info

embedding_model

Embedding Model

The embedding model to use for generating embeddings.

message

Message

The message for which to generate embeddings.

Name
Display Name
Info

embeddings

Embedding Data

Data object containing the original text and its embedding vector.

Name
Type
Description

credentials

Credentials

The default custom credentials to use

location

String

The default location to use when making API calls (default: us-central1)

max_output_tokens

Integer

Token limit determines the maximum amount of text output from one prompt (default: 128)

model_name

String

The name of the Vertex AI large language model (default: text-bison)

project

String

The default GCP project to use when making Vertex API calls

request_parallelism

Integer

The amount of parallelism allowed for requests issued to VertexAI models (default: 5)

temperature

Float

Tunes the degree of randomness in text generations. Should be a non-negative value (default: 0)

top_k

Integer

How the model selects tokens for output, the next token is selected from the top k tokens (default: 40)

top_p

Float

Tokens are selected from the most probable to least until the sum of their probabilities exceeds the top p value (default: 0.95)

tuned_model_name

String

The name of a tuned model. If provided, model_name is ignored

verbose

Boolean

This parameter controls the level of detail in the output. When set to True, it prints internal states of the chain to help debug (default: False)

Name
Type
Description

embeddings

Embeddings

An instance for generating embeddings using VertexAI

AI/ML

Inputs

Outputs

Amazon Bedrock Embeddings

Inputs

Outputs

Astra DB vectorize

This component requires that your Astra DB database has a collection that uses a vectorize embedding provider integration. For more information and instructions, see .

Inputs

The name of the API key in Astra that stores your . (Not required if using an .)

Outputs

Azure OpenAI Embeddings

Inputs

Outputs

Cloudflare Workers AI Embeddings

This component generates embeddings using .

Inputs

Outputs

Cohere Embeddings

This component is used to load embedding models from .

Inputs

Outputs

Embedding similarity

Inputs

Outputs

Google generative AI embeddings

Inputs

Outputs

Hugging Face Embeddings

Inputs

Outputs

Hugging Face embeddings inference

This component generates embeddings using and requires a to authenticate. Local inference models do not require an API key.

Inputs

Outputs

Connect the Hugging Face component to a local embeddings model

To run an embeddings inference locally, see the .

IBM watsonx embeddings

This component generates text using foundation models.

IBM watsonx embeddings model loading a chroma-db with split text

The values for API endpoint, Project ID, API key, and Model Name are found in your IBM watsonx.ai deployment. For more information, see the .

Default models

Inputs

Outputs

LM Studio Embeddings

This component generates embeddings using models.

Inputs

Outputs

MistralAI

This component generates embeddings using models.

Inputs

Outputs

NVIDIA

This component generates embeddings using .

Inputs

Outputs

Ollama embeddings

This component generates embeddings using .

For a list of Ollama embeddings models, see the .

Connect the Ollama embeddings component to a flow. For example, this flow connects a local Ollama server running a all-minilm:latest embeddings model to a vector store to generate embeddings for split text.

Ollama embeddings connected to Chroma DB

For more information, see the .

Inputs

Outputs

OpenAI Embeddings

This component is used to load embedding models from .

Inputs

Outputs

Text embedder

Inputs

Outputs

VertexAI Embeddings

This component is a wrapper around .

Inputs

Outputs

​
​
​
​
​
​
​
Embedding Generation
​
​
​
​
​
​
Cloudflare Workers AI models
​
​
​
Cohere
​
​
​
​
​
​
​
​
​
​
​
​
Hugging Face Inference API models
Hugging Face API token
​
​
​
HuggingFace documentation
​
IBM watsonx.ai
Langchain documentation
​
​
​
​
LM Studio
​
​
​
MistralAI
​
​
​
NVIDIA models
​
​
​
Ollama models
Ollama documentation
Chroma DB
Ollama documentation
​
​
​
OpenAI
​
​
​
​
​
​
Google Vertex AI
Embeddings API
​
​
vectorize embedding provider credentials
Astra-hosted embedding provider
Find your Cloudflare account ID
Create an API token
List of supported models
​