BroxiAI
  • Welcome
  • Account
    • Quickstart
    • Password
    • Team
      • Create team
      • Join team
      • Payment & Billing
      • Payment Policy
    • Global Variables
    • API Keys
  • Workflow
    • Overview
    • Quickstart
    • Components
    • Playground
    • Publish Workflow
    • File Manager
    • Webhook
  • Components
    • Input & Output
    • Agents
    • AI Models
    • Data
    • Embeddings
    • Helper
    • Loader
    • Logic
    • Memories
    • Processing
    • Prompt
    • Tools
    • Vector database
  • Advanced
    • Use Agent in flow
    • MCP Connect
    • MCP Astra DB
  • Integration
    • Apify
    • AssemblyAI
    • Composio
    • Google
      • Google Auth
      • Vertex AI
    • Notion
      • Setup
      • Notion Conversational Agent
      • Notion Meeting Notes Agent
Powered by GitBook
On this page
  • Use a helper component in a flow​
  • Batch Run​
  • Current date​
  • ID Generator​
  • Message history​
  • Message store​
  • Structured output​
  • Legacy components​
  1. Components

Helper

Helper components provide utility functions to help manage data, tasks, and other components in your flow.

PreviousEmbeddingsNextLoader

Last updated 12 days ago

Use a helper component in a flow

The Store Message helper component stores chat memories as objects, and the Message History helper component retrieves chat messages as data objects or strings.

This example flow stores and retrieves chat history from an AstraDBChatMemory component with Store Message and Chat Memory components.

Sample Flow storing Chat Memory in AstraDB

The Batch Run component runs a language model over each row of a DataFrame text column and returns a new DataFrame with the original text and an LLM response.

The response contains the following columns:

  • text_input: The original text from the input DataFrame.

  • model_response: The model's response for each input.

  • batch_index: The processing order, with a 0-based index.

  • metadata (optional): Additional information about the processing.

These columns, when connected to a Parser component, can be used as variables within curly braces.

To use the Batch Run component with a Parser component, do the following:

  1. Connect a Model component to the Batch Run component's Language model port.

  2. Connect a component that outputs DataFrame, like File component, to the Batch Run component's DataFrame input.

  3. Connect the Batch Run component's Batch Results output to a Parser component's DataFrame input. The flow looks like this:

  1. In the Column Name field of the Batch Run component, enter a column name based on the data you're loading from the File loader. For example, to process a column of name, enter name.

  2. Optionally, in the System Message field of the Batch Run component, enter a System Message to instruct the connected LLM on how to process your file. For example, Create a business card for each name.

  3. In the Template field of the Parser component, enter a template for using the Batch Run component's new DataFrame columns. To use all three columns from the Batch Run component, include them like this: record_number: {batch_index}, name: {text_input}, summary: {model_response}

  4. To run the flow, in the Parser component, click .

  5. To view your created DataFrame, in the Parser component, click .

  6. Optionally, connect a Chat Output component, and open the Playground to see the output.

Name
Display Name
Type
Info

model

Language Model

HandleInput

Connect the 'Language Model' output from your LLM component here. Required.

system_message

System Message

MultilineInput

Multi-line system instruction for all rows in the DataFrame.

df

DataFrame

DataFrameInput

The DataFrame whose column is treated as text messages, as specified by 'column_name'. Required.

column_name

Column Name

MessageTextInput

The name of the DataFrame column to treat as text messages. Default='text'. Required.

enable_metadata

Enable Metadata

BoolInput

If True, add metadata to the output DataFrame.

Name
Display Name
Method
Info

batch_results

Batch Results

run_batch

A DataFrame with columns: 'text_input', 'model_response', 'batch_index', and optional 'metadata' containing processing information.

The Current Date component returns the current date and time in a selected timezone. This component provides a flexible way to obtain timezone-specific date and time information within a BroxiAI pipeline.

Name
Display Name
Info

timezone

Timezone

Select the timezone for the current date and time.

Name
Display Name
Info

current_date

Current Date

The resulting current date and time in the selected timezone.

This component generates a unique ID.

Name
Display Name
Info

unique_id

Value

The generated unique ID.

Name
Display Name
Info

id

ID

The generated unique ID.

This component retrieves chat messages from BroxiAI tables or external memory.

In this example, the Message Store component stores the complete chat history in a local BroxiAi table, which the Message History component retrieves as context for the LLM to answer each question.

Name
Display Name
Info

memory

External Memory

Retrieve messages from an external memory. If empty, it will use the Langflow tables.

sender

Sender Type

Filter by sender type.

sender_name

Sender Name

Filter by sender name.

n_messages

Number of Messages

Number of messages to retrieve.

session_id

Session ID

The session ID of the chat. If empty, the current session ID parameter will be used.

order

Order

Order of the messages.

template

Template

The template to use for formatting the data. It can contain the keys {text}, {sender} or any other key in the message data.

Name
Display Name
Info

messages

Messages (Data)

Retrieved messages as Data objects.

messages_text

Messages (Text)

Retrieved messages formatted as text.

lc_memory

Memory

This component stores chat messages or text in Langflow tables or external memory.

In this example, the Message Store component stores the complete chat history in a local Langflow table, which the Message History component retrieves as context for the LLM to answer each question.

Name
Display Name
Info

message

Message

The chat message to be stored. (Required)

memory

External Memory

The external memory to store the message. If empty, it will use the Langflow tables.

sender

Sender

The sender of the message. Can be Machine or User. If empty, the current sender parameter will be used.

sender_name

Sender Name

The name of the sender. Can be AI or User. If empty, the current sender parameter will be used.

session_id

Session ID

The session ID of the chat. If empty, the current session ID parameter will be used.

Name
Display Name
Info

stored_messages

Stored Messages

The list of stored messages after the current message has been added.

This component transforms LLM responses into structured data formats.

In this example from the Financial Support Parser template, the Structured Output component transforms unstructured financial reports into structured data.

The connected LLM model is prompted by the Structured Output component's Format Instructions parameter to extract structured output from the unstructured text. Format Instructions is utilized as the system prompt for the Structured Output component.

In the Structured Output component, click the Open table button to view the Output Schema table. The Output Schema parameter defines the structure and data types for the model's output using a table with the following fields:

  • Name: The name of the output field.

  • Description: The purpose of the output field.

  • Type: The data type of the output field. The available types are str, int, float, bool, list, or dict. The default is text.

  • Multiple: This feature is deprecated. Currently, it is set to True by default if you expect multiple values for a single field. For example, a list of features is set to True to contain multiple values, such as ["waterproof", "durable", "lightweight"]. Default: True.

The Parse DataFrame component parses the structured output into a template for orderly presentation in chat output. The template receives the values from the output_schema table with curly braces.

For example, the template EBITDA: {EBITDA} , Net Income: {NET_INCOME} , GROSS_PROFIT: {GROSS_PROFIT} presents the extracted values in the Playground as EBITDA: 900 million , Net Income: 500 million , GROSS_PROFIT: 1.2 billion.

Name
Display Name
Info

llm

Language Model

The language model to use to generate the structured output.

input_value

Input Message

The input message to the language model.

system_prompt

Format Instructions

Instructions to the language model for formatting the output.

schema_name

Schema Name

The name for the output data schema.

output_schema

Output Schema

Defines the structure and data types for the model's output.

multiple

Generate Multiple

[Deprecated] Always set to True.

Name
Display Name
Info

structured_output

Structured Output

The structured output is a Data object based on the defined schema.

structured_output_dataframe

DataFrame

Legacy components are no longer in active development but are backward compatible.

This component dynamically creates a record with a specified number of fields.

Name
Display Name
Info

n_fields

Number of Fields

Number of fields to be added to the record.

text_key

Text Key

Key used as text.

Name
Display Name
Info

list

List

The dynamically created list with the specified number of fields.

This component transforms the output of a language model into a specified format. It supports CSV format parsing, which converts LLM responses into comma-separated lists using Langchain's CommaSeparatedListOutputParser.

note

This component only provides formatting instructions and parsing functionality. It does not include a prompt. You'll need to connect it to a separate Prompt component to create the actual prompt template for the LLM to use.

Both the Output Parser and Structured Output components format LLM responses, but they have different use cases. The Output Parser is simpler and focused on converting responses into comma-separated lists. Use this when you just need a list of items, for example ["item1", "item2", "item3"]. The Structured Output is more complex and flexible, and allows you to define custom schemas with multiple fields of different types. Use this when you need to extract structured data with specific fields and types.

To use this component:

  1. Create a Prompt component and connect the Output Parser's format_instructions output to it. This ensures the LLM knows how to format its response.

  2. Write your actual prompt text in the Prompt component, including the {format_instructions} variable. For example, in your Prompt component, the template might look like:

{format_instructions}
Please list three fruits.
  1. Connect the output_parser output to your LLM model.

  2. The output parser converts this into a Python list: ["apple", "banana", "orange"].

Name
Display Name
Info

parser_type

Parser

Select the parser type. Currently supports "CSV".

Name
Display Name
Info

format_instructions

Format Instructions

Pass to a prompt template to include formatting instructions for LLM responses.

output_parser

Output Parser

The constructed output parser that can be used to parse LLM responses.

Batch Run

A batch run component connected to OpenAI and a Parser

Inputs

Outputs

Current date

Inputs

Outputs

ID Generator

Inputs

Outputs

Message history

Message store and history components

Inputs

Outputs

A constructed Langchain object

Message store

Message store and history components

Inputs

Outputs

Structured output

Structured output example

Inputs

Outputs

The structured output converted to a format.

Legacy components

Create List

Inputs

Outputs

Output Parser

Inputs

Outputs

​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
ConversationBufferMemory
DataFrame
​
Data